
Analyzing Financial and Economic Data
with R - Online Version

Marcelo S. Perlin (marcelo.perlin@ufrgs.br)

2023-12-13

mailto:marcelo.perlin@ufrgs.br

Analyzing Financial and Economic Data with R

by Marcelo Scherer Perlin

© 2023 Marcelo S. Perlin. All rights reserved.

Independent publication. Printed on demand by Amazon.com.
Online edition with first six chapters available at:
https://www.msperlin.com/afedR/

Cover: Rubens Lima - https://capista.com.br
Proofreader: Various
ISBN (paperback): 9798386583088
ISBN (hardcover): 9798386584962
ISBN (ebook): -

History of editions:
2017-05-01 First edition
2020-02-15 Second edition
2021-03-15 Second edition revised
2023-03-15 Third edition

While the author has used good faith efforts to ensure that the instructions
and code contained in this work are accurate, the author disclaims all respon-
sibility for errors or omissions, including without limitation responsibility for
damages resulting from the use of or reliance on this work and its resulting
code. The use of the information contained in this work is at your own risk.
If any code in this book is subject to open source licenses or the intellectual
property rights of others, complying with such rights and licenses is your
responsibility as a user.

Contents

About New Edition 11

Preface 13
Conventions . 15
Supplement Material . 15
Content for Instructors . 16

1 Introduction 19
1.1 What is R . 19
1.2 Why Choose R . 20
1.3 What Can You Do With R and RStudio? 21
1.4 Installing R . 22
1.5 Installing RStudio . 25
1.6 Resources in the Web . 26
1.7 Structure and Organization 26
1.8 Exercises . 28

2 Basic Operations in R 31
2.1 Working With R . 31
2.2 Objects in R . 33
2.3 International and Local Formats 34
2.4 Types of Files in R . 35
2.5 Explaining the RStudio Screen 36
2.6 R Packages . 39

2.6.1 Installing Packages from CRAN 42
2.6.2 Installing Packages from Github 42
2.6.3 Loading Packages . 43
2.6.4 Upgrading Packages 45

3

4 CONTENTS

2.7 Running Scripts from RStudio 46
2.8 Using the help files . 48

2.8.1 RStudio shortcuts . 49
2.9 Testing and Debugging Code 51
2.10 Creating Simple Objects . 52
2.11 Creating Vectors . 54
2.12 Knowing Your Environment and Objects 55
2.13 Finding the Size of Objects 57
2.14 Selecting Elements from an Atomic Vector 59
2.15 Removing Objects from the Memory 62
2.16 Displaying and Setting the Working Directory 63
2.17 Canceling Code Execution . 65
2.18 Code Comments . 65
2.19 Using Code Completion with tab 67
2.20 Interacting with Files and the Operating System 71

2.20.1 Listing Files and Folders 71
2.20.2 Deleting Files and Directories 73
2.20.3 Downloading Files from the Internet 74
2.20.4 Using Temporary Files and Directories 75

2.21 Exercises . 76

3 Writing Research Scripts 79
3.1 Stages of Research . 79
3.2 Folder Structure . 81
3.3 Important Aspects of a Research Script 82
3.4 Exercises . 84

4 Importing Data from Local Files 85
4.1 The path of local files . 85
4.2 csv files . 87

4.2.1 Importing Data . 88
4.2.2 Exporting Data . 92

4.3 Excel Files (xlsx) . 93
4.3.1 Importing Data . 94
4.3.2 Exporting Data . 95

4.4 RData and rds Files . 95
4.4.1 Importing Data . 96
4.4.2 Exporting Data . 97

4.5 fst files . 98
4.5.1 Importing Data . 98
4.5.2 Exporting Data . 98
4.5.3 Timing the fst format 99

4.6 SQLite Files . 101

CONTENTS 5

4.6.1 Importing Data . 101
4.6.2 Exporting Data . 102

4.7 Unstructured Data and Other Formats 103
4.7.1 Importing Data . 104
4.7.2 Exporting Data . 105

4.8 How to Select a Data File Format 106
4.9 Exercises . 107

5 Importing Data from the Internet 109
5.1 Package {GetQuandlData} 109
5.2 Package {yfR} . 111
5.3 Package {simfinapi} . 115

5.3.1 Example 01 - Apple Inc Annual Profit 116
5.3.2 Example 02 - Annual Net Profit of Many Companies . 117
5.3.3 Example 03 - Fetching price data 118

5.4 Package {tidyquant} . 119
5.5 Other Packages . 121
5.6 Accessing Data from Web Pages (webscraping) 121

5.6.1 Scraping the Components of the SP500 Index from
Wikipedia . 122

5.7 Exercises . 124

6 Dataframes and Other Objects 127
6.1 Dataframes . 127

6.1.1 Creating dataframes 128
6.1.2 Inspecting a Dataframe 128
6.1.3 The pipeline Operators (|> and |>) 128
6.1.4 Accessing Columns . 129
6.1.5 Modifying a dataframe 129
6.1.6 Filtering rows of a dataframe 129
6.1.7 Sorting a dataframe 130
6.1.8 Combining and Aggregating dataframes 130
6.1.9 Extensions of the dataframe Class 130
6.1.10 Other Useful Functions for Handling dataframes . . . 131

6.2 Lists . 131
6.2.1 Creating lists . 131
6.2.2 Accessing the Elements of a list 132
6.2.3 Adding and Removing Elements from a list 132
6.2.4 Processing the Elements of a list 132
6.2.5 Other Useful Functions 133

6.3 Matrices . 133
6.3.1 Selecting Elements from a matrix 133
6.3.2 Other Useful Functions 134

6 CONTENTS

6.4 Exercises . 134

7 Basic Object Classes 135
7.1 Numeric Objects . 135

7.1.1 Creating and Manipulating numeric Objects 136
7.1.2 Creating a numeric Sequence 136
7.1.3 Creating Vectors with Repeated Elements 136
7.1.4 Creating Vectors with Random Numbers 137
7.1.5 Accessing the Elements of a numeric Vector 137
7.1.6 Modifying and Removing Elements of a numeric Vector137
7.1.7 Creating Groups . 138
7.1.8 Other Useful Functions 138

7.2 Character Objects . 138
7.2.1 Creating a Simple character Object 139
7.2.2 Creating Structured character Objects 139
7.2.3 character Constants 139
7.2.4 Selecting Pieces of a Text Object 140
7.2.5 Finding and Replacing Characters of a Text 140
7.2.6 Splitting Text . 140
7.2.7 Finding the Number of Characters in a Text 141
7.2.8 Generating Combinations of Text 141
7.2.9 Encoding of character Objects 141
7.2.10 Other Useful Functions 142

7.3 Factor Objects . 142
7.3.1 Creating factors . 142
7.3.2 Modifying factors . 143
7.3.3 Converting factors to Other Classes 143
7.3.4 Creating Contingency Tables 143
7.3.5 Other Useful Functions 144

7.4 Logical Objects . 144
7.4.1 Creating logical Objects 144

7.5 Date and Time . 145
7.5.1 Creating Simple Dates 145
7.5.2 Creating a Sequence of Dates 145
7.5.3 Operations with Dates 146
7.5.4 Dealing with Time . 146
7.5.5 Customizing the Format of Dates and Times 146
7.5.6 Extracting Elements of a Date 147
7.5.7 Find the Current Date and Time 147
7.5.8 Other Useful Functions 147

7.6 Missing Data - NA (Not available) 148
7.6.1 Defining NA Values . 148

CONTENTS 7

7.6.2 Finding and Replacing NA 148
7.6.3 Other Useful Functions 149

7.7 Exercises . 149

8 Programming and Data Analysis 151
8.1 R Functions . 151
8.2 Using for Loops . 152
8.3 Conditional Statements (if, else, switch) 152
8.4 Functional Programming . 152

8.4.1 Using lapply() . 153
8.4.2 Using sapply() . 153
8.4.3 Using tapply() . 153
8.4.4 Using mapply() . 154
8.4.5 Using apply() . 154
8.4.6 Using by() . 154

8.5 Using package {purrr} . 155
8.5.1 Function map() . 155
8.5.2 Function safely() . 155
8.5.3 Function pmap() . 156

8.6 Data Manipulation with Package {dplyr} 156
8.6.1 Group Operations . 156
8.6.2 Complex Group Operations 157

8.7 Exercises . 157

9 Cleaning and Structuring Data 159
9.1 The Format of a dataframe 159

9.1.1 Converting a dataframe Structure (long and wide) . . 160
9.2 Converting lists into dataframes 160
9.3 Removing Outliers . 160

9.3.1 Treating Outliers in dataframes 161
9.4 Inflation and Price Data . 161
9.5 Modifying Time Frequency and Aggregating Data 161
9.6 Exercises . 162

10 Data Visualization with {ggplot2} 163
10.1 Principles for Data visualization 163
10.2 The {ggplot2} Package . 164
10.3 Using Graphics Windows . 164
10.4 Creating Figures with Function ggplot() 164
10.5 Data Visualization for Groups 165

10.5.1 The US Yield Curve 165
10.6 Using Themes . 165
10.7 Creating Panels with facet_wrap 166

8 CONTENTS

10.8 Using the Pipeline . 166
10.9 Creating Statistical Graphics 166

10.9.1 Creating Histograms 167
10.9.2 Creating boxplot Figures 167
10.9.3 Creating QQ Plots . 167

10.10Saving Graphics to a File . 168
10.11Exercises . 168

11 Financial Econometrics with R 169
11.1 Linear Models (OLS) . 169

11.1.1 Simulating a Linear Model 170
11.1.2 Estimating a Linear Model 170
11.1.3 Statistical Inference in Linear Models 170

11.2 Generalized Linear Models (GLM) 171
11.2.1 Simulating a GLM Model 171
11.2.2 Estimating a GLM Model 171

11.3 Panel Data Models . 172
11.3.1 Simulating Panel Data Models 172
11.3.2 Estimating Panel Data Models 172

11.4 Arima Models . 173
11.4.1 Simulating Arima Models 173
11.4.2 Estimating Arima Models 173
11.4.3 Forecasting Arima Models 174

11.5 GARCH Models . 174
11.5.1 Simulating Garch Models 174
11.5.2 Estimating Garch Models 175
11.5.3 Forecasting Garch Models 175

11.6 Dealing with Several Models 175
11.6.1 Using tapply() and sapply() 176
11.6.2 Using by() . 176
11.6.3 Using dplyr::group_by() 176

11.7 Exercises . 177

12 Reporting Results 179
12.1 Reporting Tables . 179
12.2 Reporting Models . 180
12.3 Creating Reports with RMarkdown 180
12.4 Exercises . 180

13 Optimizing Code 181
13.1 Optimizing your Programming Time 181
13.2 Optimizing Code Speed . 182

13.2.1 Profiling Code . 182

CONTENTS 9

13.2.2 Simple Strategies to Improve Code Speed 182
13.2.3 Using C++ code (package {Rcpp}) 183
13.2.4 Using cache (package {memoise}) 184

13.3 Exercises . 184

Warning in install.packages :
package 'Rbitcoin' is not available for this version of R
##
A version of this package for your version of R might be available elsewhere,
see the ideas at
https://cran.r-project.org/doc/manuals/r-patched/R-admin.html#Installing-packages

10 CONTENTS

About New Edition

My plan is to keep updating the content of this book every two years. Its
been fun to see how much can change in the R ecosystem in just a couple of
years. Here are the main updates in this revision:

New pipeline operator A new pipeline operator (|>) was introduced in
R version 4.1.0. While the old pipeline from {magrittr} (Bache and
Wickham, 2022) can still be found in the wild, my best bet is that,
given its native quality and ease of use, the new pipeline will dominate
the scene.

New packages Many of the packages used in previous editions have
changed over the years. A couple of packages were dropped from
CRAN, and others were substituted by upgraded versions.

New book package I rewrote all functions in package {afedR3} (Perlin,
2023b) towards a modular approach, facilitating the future mainte-
nance of the book content. It also includes a testing framework, which
will make sure all content in the book is presented as it should.

I hope you enjoy this new edition. Its been a great pleasure to evolve with
the book, and I hope I can keep maintaining it over the next decades.

Marcelo S. Perlin,

Porto Alegre, Brazil, 2023-03-08

11

https://cran.r-project.org/doc/manuals/r-devel/NEWS.html

12 CONTENTS

Preface

Since you are reading this book, you are likely a data analyst looking for
alternative and more efficient ways to add value to your organization, an
undergraduate or graduate student in the first steps of learning data science,
or an experienced researcher, looking for new computational tools. In any
case, be assured that you are in the right place. This book will teach
you how to use R and RStudio for data analysis in finance and
economics.

The first version of the book originates from the class material I teach my
postgraduate students in my university. By observing students learning and
using R in the classroom, I frequently see the positive impact of technology
on their careers. They spend less time doing repetitive and soul-crushing
spreadsheet data chores, and more time thinking about their analysis and
learning new tools. This book my humble attempt to go beyond the local
classroom and reach an international audience.

Another motivation for writing this book is my personal experience using
code from other researchers. Usually, the code is not well-organized, lacks
clarity, and, possibly, only works in the computer of its author! After being
constantly frustrated, I realized the work required to figure out the code of
other researchers would take more time than writing the procedure myself.
These cases hurt the development of science, as one of its basic principles
is the reproducibility of experiments. As researchers are expected to
be good writers, it should also be expected that their code is in a proper
format and readable by other people. With this book, I will tackle this
problem by presenting a code structure focused on scientific reproducibility,
organization, and usability.

In this book, we will not work on the advanced uses of R. The content will be
limited to simple and practical examples. One challenge I had while writing

13

14 CONTENTS

this book was defining the boundary between introductory and advanced
material. Wherever possible, I gradually dosed the level of complexity. For
readers interested in learning advanced features and inner workings of R, I
suggest the book Venables et al. (2004), Teetor (2011) and Wickham (2019).

This is what you’ll learn from this book:

Using R and RStudio In chapter 01 we will discuss the use of R as a pro-
gramming platform designed to solve data-related problems in finance
and economics. In chapter 02 we will explore basic commands and
functionalities that will increase your productivity as a data analyst.

Importing financial and economic data In chapters 04 and 05 we will
learn to import data from local files, such as an Excel spreadsheet, or
the internet, using specialized packages that can download financial
and economic data such as stock prices, economic indices, the US yield
curve, corporate financial statements, and many others.

Cleaning, structuring and analyzing the data with R In chapters
06 and 07 we will concentrate our study on the ecosystem of basic
and advanced classes of objects within R. We will learn to manipulate
objects such as numeric vectors, dates and whole tables. In chapters
08 and 09 we’ll learn to use the programming to solve data-related
problems such as cleaning and structuring messy data. In chapter 11
we will learn applications of the most common econometric models
used in finance and economics including linear regression, generalized
linear model, Arima model and others.

Creating a visual analysis of data In chapter 10 we’ll learn to use func-
tions from package {ggplot2} (Wickham et al., 2023a) to create clever
visualizations of our datasets, including the most popular applications
in finance and economics, time series and statistical plots.

Reporting your results In chapter 12 we will see how to report our data
analysis using specialized packages and the RMarkdown technology.
It includes the topic of presenting and exporting tables, figures and
models to a written report.

Writing better and faster code In the last chapter of the book we dis-
cuss best programming practices with R. We will look at how to profile
code and search for bottlenecks and improving execution time with
caching strategies using package {memoise} (Wickham et al., 2021),
C++ code with {Rcpp} (Eddelbuettel et al., 2023) and parallel com-
puting with {furrr} (Vaughan and Dancho, 2022).

CONTENTS 15

Conventions
The format of the book was chosen to maximize learnability and memoriza-
tion. Here are the conventions used throughout the text:

Packages Every R package used in the text will have the textual format
of {package}. The first time a R package shows up in the text, a
formal citation will also be available.

Functions Functions are formatted as dplyr::glimpse() , with the infor-
mation of which package the function belongs to. This notation is
simply a copy of real R code, that is, you can call functions using the
same structure. The first time the function is referenced, the package
name will be included, except for packages that are pre-loaded in a R
session ({base}, {utils} and others).

Code All R code will be presented in boxes, with the code output prefixed
by string R>. Inline comments are set with the symbol #. Anything on
the right side of # is not evaluated by R. Here’s an example, showing
the contents of a list in R:

create a list
my_list <- list('xx', 1:5, 'dec')

print list
print(my_list)

R> [[1]]
R> [1] "xx"
R>
R> [[2]]
R> [1] 1 2 3 4 5
R>
R> [[3]]
R> [1] "dec"

Supplement Material
All the material used in the book, including code examples separated by
chapters, is publicly available on the internet and distributed with an R
package called {afedR3} (Perlin, 2023b). It includes data files and several
functions that can make it easier to run the examples of the book. If you
plan to write some code as you read the book, this package will greatly help
your journey.

16 CONTENTS

In order to install the book package in your computer, you need to execute a
couple of lines of code in R. For that, copy and paste the following commands
into RStudio prompt (bottom left of screen, with a “>” sign) and press enter
for each command. Be aware you’ll need R and RStudio installed in your
computer (see section 1.4 for details).
install devtools dependency
install.packages('devtools')

install book package
devtools::install_github('msperlin/afedR3')

What this code will do is to install package {devtools} (Wickham
et al., 2022), a required dependency for installing a package from
Github, which is where the book bundle is hosted. After that, a call to
devtools::install_github('msperlin/afedR3') will install the package
in your computer. You can safely ignore any warning messages about long
paths during installation.

After installing package {afedR3} (Perlin, 2023b), you can, but its not
necessary, to copy all book files to a local folder by executing the following
command in R:
afedR3::bookfiles_get(path_to_copy = '~/afedR3')

The previous code will unzip the book file into your “Documents/afedR3”
folder, as the tilda (~) is a shortcut to your “Documents” directory1. If you
prefer the old-fashioned way of using an internet page, you can find and
download the package zip file from github2.

A suggestion, before you read the rest of the book: go to the book website
and search for the related links page at the bottom. There you will find
all internet addresses highlighted in the text, including the links for the
installation of R and RStudio.

Content for Instructors
If you are an R instructor, you’ll find plenty of material you can use with
your classes. I made sure you get everything you need:

Over 100 exercises Every chapter in this book includes exercises that
1In R, you can type path.expand('~') to see exactly where is your “Documents”

folder located.
2https://github.com/msperlin/afedR3

https://github.com/msperlin/afedR3
https://www.msperlin.com/publication/2020_book-afedr-en/
https://github.com/msperlin/afedR3

CONTENTS 17

your students can practice, with solutions available in the web ver-
sion of the book. Also, all exercises are available in the exams for-
mat, meaning that you can compile the same exercises in pdf or html.
Moreover, you can export the exercises to e-learning platforms such as
Moodle and Blackboard. See this blog post3 for instructions on how
to use it with your students.

Web version The first seven chapters of the book are freely available at
link https://www.msperlin.com/afedr, which is more than enough
material for an introductory class on R and data analysis.

All of this content is released with the MIT license, so feel free to use and
abuse it, as long as you give the credits to the original author. You can find
the content within the book package {afedR3} (see previous instructions
on installation) or directly at the book site4.

I hope you enjoy this book and find it useful for your work.

Good reading!

Marcelo S. Perlin

3https://www.msperlin.com/post/2023-03-09-compiling-exercises-afedR3/
4https://www.msperlin.com/publication/2020_book-afedr-en/

https://www.msperlin.com/afedr
https://www.msperlin.com/afedr
http://www.r-exams.org/
http://www.r-exams.org/
https://www.msperlin.com/post/2023-03-09-compiling-exercises-afedR3/
https://www.msperlin.com/afedr
https://opensource.org/licenses/MIT
https://www.msperlin.com/publication/2020_book-afedr-en/
https://www.msperlin.com/post/2023-03-09-compiling-exercises-afedR3/
https://www.msperlin.com/publication/2020_book-afedr-en/

18 CONTENTS

Chapter 1
Introduction

In the digital era, information is abundant and accessible. From
the ever-changing price of financial contracts to the unstructured data of
social media websites, the high volume of information creates a strong need
for data analysis in the workplace. A company or organization benefit im-
mensely when it can create a bridge between raw information from its envi-
ronment and making strategic decisions. Undoubtedly, this is a prolific time
for professionals skilled in using the right tools for acquiring, storing, and
analyzing data.

In particular, datasets related to Economics and Finance are widely available
to the public. International and local institutions, such as central banks,
government research agencies, financial exchanges, and many others, provide
their data publicly, either by legal obligation or to foment research. Whether
you are looking into statistics for a particular country or a company, most
information is just two clicks away.

Not surprisingly, it is expected that a graduate student or a data analyst
has learned at least one programming language that allows him/her to do
his work more efficiently. Learning how to program is becoming a
requisite for the job market. This is where the role and contribution of
R comes into play. In the next sections, I will explain what R is and why
you should use it.

1.1 What is R
R is a programming language specially designed to resolve statistical prob-
lems and display graphical representations of data. R is a modern version

19

20 CHAPTER 1. INTRODUCTION

of S, a programming language originally created in Bell Laboratories (for-
merly AT&T, now Lucent Technologies). The base code of R was developed
by two academics, Ross Ihaka and Robert Gentleman, resulting in the
programming platform we have today. For anyone curious about the name,
the letter R was chosen due to the common first letter of the name of their
creators.

Today, R is almost synonymous with data analysis, with a large user base and
consolidated modules. It is likely that researchers from various fields, from
economics to biology, find in R significant preexisting code that facilitates
their analysis. On the business side, large and established companies, such
as Google and Microsoft, already adopted R as the internal language for data
analysis. R is maintained by the R Foundation1 and the R Consortium2,
a collective effort to fund projects for extending the programming language.

1.2 Why Choose R
Learning a new programming language requires a lot of time and effort. Per-
haps you’re wondering why you should choose R and invest time in learning
it. Here are the main arguments.

First, R is a mature and stable platform, continuously supported
and intensively used in the industry. When choosing R, you will have
the computational background not only for an academic career but also to
work as a data analyst in private organizations. Due to its open license, you
can use R anywhere. Also, the strong support from the community means
it is very unlikely the R platform will ever fade away or be substituted. De-
pending on your career choices, R might be the only programming language
you ever need to learn.

Learning R is easy. My experience in teaching R allows me to confidently
state that students, even those with no programming experience, have no
problem learning the language and using it to create their own code. The
language is intuitive and certain rules and functions can be extended to
different cases. Once you understand how the software expects you to think,
it become easy to traverse over different modules and functionalities.

The engine of R and the interface of RStudio creates a highly
productive environment. The graphical interface provided by RStudio
facilitates the use of R and increases productivity by introducing new fea-
tures to the platform. By combining both, the user has at his disposal many

1https://www.r-project.org/foundation/
2https://www.r-consortium.org/

https://www.r-project.org/foundation/
https://www.r-consortium.org/
https://www.r-project.org/foundation/
https://www.r-consortium.org/

1.3. WHAT CAN YOU DO WITH R AND RSTUDIO? 21

tools that facilitate the development of research scripts and other projects.

R Packages allow the user to do many different things with R. We
will soon learn that R offers several modules that can be installed over the
internet whenever necessary. These modules extend the basic language of R
and enable the most diverse functionalities. Besides basic data tasks such
as reading and writing, you can, for example, use R to build and publish a
blog, send emails, create exams, write random jokes and poems (seriously!),
and many other features. The existing external modules in R are truly an
impressive achievement of the community.

R is compatible with different operating systems and it can inter-
face with different programming languages. If you need to execute
code from another programming language, such as C++, Python, Julia, it is
easy to integrate it with R. Therefore, the user is not restricted to a single
programming language and can easily use features and functions from others.
For example, the C++ code is well known for its superior speed in numerical
tasks. From an R script, you can use package {Rcpp} (Eddelbuettel et al.,
2023) to write a C++ function and effortlessly use it within your R code.

R is free! The main software and all its packages are free. A generous
license motivates the adoption of the R language in a business environment,
where obtaining individual and collective licenses of commercial software can
be costly. This means you can take R anywhere you go, regardless of whether
you have a budget for software or not.

1.3 What Can You Do With R and RStu-
dio?

R is a fairly complete programming language and any computational problem
can be solved based on it. Given the adoption of R for different areas of
knowledge, the list is extensive. With finance and economics, I can highlight
the following possibilities:

• Substitute and improve data-intensive tasks from spreadsheet-like soft-
ware;

• Develop routines for managing investment portfolios and executing
financial orders;

• Creating tools for calculating and reporting economic indices such as
inflation and unemployment;

22 CHAPTER 1. INTRODUCTION

• Performing empirical data research using statistical techniques, such
as econometric models and hypothesis testing;

• Create dynamic websites with the {shiny} (Chang et al., 2021) pack-
age, allowing anyone in the world to use a computational tool created
by you;

• Automate the process of writing technical reports with the RMark-
down and Quarto technology;

Moreover, public access to packages developed by users further expands
these capabilities. The CRAN views website3 offers a Task Views panel
for the topic of Finance4 and Econometrics5. There you can find the main
packages to perform specific operations such as importing financial data
from the internet, estimating econometric models, calculation of different
risk estimates, among many other possibilities. Reading this page and the
knowledge of these packages is essential for those who intend to work in
Finance and Economics.

1.4 Installing R
Before going any further, let’s install the required software on your computer.
The most direct and practical way to install R is to direct your favourite
internet browser to R website6 and click the Download link in the left side
of the page, as shown in Figure 1.1.

The next screen gives you a choice of the mirror to download the installation
files. The CRAN repository (R Comprehensive Archive network) is mirrored
in various parts of the world. You can choose one of the links from the
nearest location to you. If undecided, just select the mirror 0-Cloud (see
Figure 1.2), which will automatically take you to the nearest location.

The next step involves selecting your operating system, likely to be Windows.
From now on, due to the greater popularity of this platform, we will focus on
installing R in Windows. The instructions for installing R in other operating
systems can be easily found online. Regardless of the underlying platform,
using R is about the same. There are a few exceptions, especially when
R interacts with the file system. In the content of the book, special care
was taken to choose functions that work the same way in different operating

3https://cran.r-project.org/web/views
4https://cran.r-project.org/web/views/Finance.html
5https://cran.r-project.org/web/views/Econometrics.html
6http://www.r-project.org/

https://cran.r-project.org/web/views
https://cran.r-project.org/web/views/Finance.html
https://cran.r-project.org/web/views/Econometrics.html
http://www.r-project.org/
https://www.google.com.br/webhp?sourceid=chrome-instant&ion=1&espv=2&ie=UTF-8#q=installing+r&*
https://cran.r-project.org/web/views
https://cran.r-project.org/web/views/Finance.html
https://cran.r-project.org/web/views/Econometrics.html
http://www.r-project.org/

1.4. INSTALLING R 23

Figure 1.1: Initial page for downloading R

systems. A few exceptions are highlighted throughout the book. So, even if
you are using a Mac or a flavor of Linux, you can take full advantage of the
material presented here.

After clicking the link Download R for Windows, as in Figure 1.3, the next
screen will show the following download options: base, contrib, old.contrib
and RTools. The first (base), should be selected. It contains the download
link to the executable installation file of R in Windows.

Some R packages requires local compilation of the files. For that, you need
RTools, a bundle of compilers and utilities. So, you can safely install RTools
from CRAN website.

After clicking the link base, the next screen will show the link to the download
of the R installation file. After downloading the file, open it and follow the
steps in the installation screen. At this time, no special configuration is
required. I suggest keeping all the default choices and simply hit accept in
the displayed dialogue screens. After the installation of R, it is strongly
recommended to install RStudio, which will be addressed next.

24 CHAPTER 1. INTRODUCTION

Figure 1.2: Choosing the CRAN mirror

Figure 1.3: Choosing the operating system

1.5. INSTALLING RSTUDIO 25

Figure 1.4: Installation options

Be aware that R has a consistent release schedule. Every four
months a new version of R is released, fixing bugs and implement-
ing new solutions. There are two main types of releases, major
and minor. For example, today, 2023-02-23, the latest version of
R is 4.2.2. The first digit (“4”) indicates the major release while
all others are of the minor type. Generally, the minor changes are
very specific and, possibly, will have little impact on your work.
However, unlike minor releases, major releases are fully re-
flected in the R package ecosystem. Every time you install
a new major version of R, you will have to reinstall all packages.
Particularly, the problem here is that it is not uncommon that a
new major release comes with package incompatibility issues. My
advice is: every time a new major release of R comes out, wait
a few months before installing it on your machine. Thus, the
authors of the packages will have more time to update their codes,
minimizing the possibility of compatibility problems.

1.5 Installing RStudio
The base installation of R includes its own GUI (graphical user interface),
where we can write and execute code. However, this native interface has sev-
eral limitations. RStudio Desktop substitutes the original GUI and makes
access to R more practical and efficient. One way to understand this relation-
ship is with an analogy with cars. While R is the engine of the programming
language, RStudio is the body and instrument panel, which significantly
improves the user experience. With RStudio you’ll have code highlight, cre-
ation of projects, and much more.

The installation of RStudio is simpler than that of R. Direct your favourite

26 CHAPTER 1. INTRODUCTION

browser to Posit (formerly RStudio) website7 and click in Download RStudio
and then Download RStudio Desktop. After that, just select the installation
file relative to the operating system on which you will work. This option is
probably WINDOWS Vista 7/8/10. Note that RStudio is also available for
Mac and Linux.

I emphasize that using RStudio is not essential to develop programs in R.
Other interfaces are available and can be used. However, in my experience,
RStudio is the interface that offers a vast range of features for the language
and is widely used, which justifies its choice. If you want to explore other
programming interfaces for R, one that I really enjoy and use is Microsoft’s
VSCode8.

1.6 Resources in the Web
The R community is vivid and engaging. There are many authors,
such as myself9, that constantly release material about R in their blogs. It
includes the announcement of new packages, analysis of real world datasets,
curiosities, rants, and tutorials. R-Bloggers10 is a website that aggregates
these blogs, making it easier for anyone to access and participate. I strongly
recommend to sign up for the R-Bloggers feed in RSS11, Facebook12 or Twit-
ter13. Not only you’ll be informed of what is happening in the R community,
but also learn a lot by reading other people’s code and articles.

Learning and using R can be a social experience. Several conferences and
user groups are available in many countries. You can find the complete list
in this link14. I also suggest looking in social platforms for local R groups
in your region.

1.7 Structure and Organization
This book presents a practical approach to using R in finance and economics.
To get the most out of it, I suggest you first try to understand what the code
does and, after that, use it on your own computer. Whenever you find a piece

7https://posit.co/
8https://code.visualstudio.com/
9https://www.msperlin.com

10https://www.r-bloggers.com/
11https://feeds.feedburner.com/RBloggers
12https://www.facebook.com/rbloggers/?fref=ts
13https://twitter.com/Rbloggers
14https://jumpingrivers.github.io/meetingsR/index.html

https://posit.co/
https://code.visualstudio.com/
https://www.msperlin.com
https://www.r-bloggers.com/
https://feeds.feedburner.com/RBloggers
https://www.facebook.com/rbloggers/?fref=ts
https://twitter.com/Rbloggers
https://twitter.com/Rbloggers
https://jumpingrivers.github.io/meetingsR/index.html
https://posit.co/
https://code.visualstudio.com/
https://www.msperlin.com
https://www.r-bloggers.com/
https://feeds.feedburner.com/RBloggers
https://www.facebook.com/rbloggers/?fref=ts
https://twitter.com/Rbloggers
https://jumpingrivers.github.io/meetingsR/index.html

1.7. STRUCTURE AND ORGANIZATION 27

of code that you do not understand, go on and study it. At first, it might
seem like a daunting task but, with time, be confident that the learning
process will get a lot easier as the code blocks will start to make sense and
connect to each other.

Learning to program in a new platform is like learning a foreign spoken
language: the use in day-to-day problems is imperative to create fluency.
All the code and data used in this book is available with the installation
of package {afedR3} (Perlin, 2023b) (see the preface for instructions on
how to install it). I suggest you test the code on your computer and play
with it, modifying the examples and checking the effect of changes in the
outputs. Whenever you have a computational problem, try using R to solve
it. You’ll stumble and make mistakes at first. But I guarantee that, soon
enough, you’ll be able to write complex data tasks effortlessly.

Throughout the book, every demonstration of code will have two parts: the
R code and its output. The output is nothing more than the textual result
of the commands on the screen. All inputs and outputs code will be marked
in the text with a special format. See the following example:
create a list
this_list <- list('abc', 1:5, 'dec')

print list
print(this_list)

R> [[1]]
R> [1] "abc"
R>
R> [[2]]
R> [1] 1 2 3 4 5
R>
R> [[3]]
R> [1] "dec"

For the previous chunk of code, lines this_list <- list('abc', 1:5,
'dec') and print(this_list) are actual commands given to R. The out-
put of this simple piece of code is the on-screen presentation of the contents
of object this_list.

The code can also be spatially organized using newlines. This is a common
strategy around arguments of functions. The next chunk of code is equivalent
to the previous and will run the exact same way. Notice how we used a new
line to vertically align the arguments of function list. You’ll soon see that,
throughout the book, this type of vertical alignment is constantly used.

28 CHAPTER 1. INTRODUCTION

create a list
this_list <- list('abc',

1:5,
'dec')

print list
print(this_list)

R> [[1]]
R> [1] "abc"
R>
R> [[2]]
R> [1] 1 2 3 4 5
R>
R> [[3]]
R> [1] "dec"

The code also follows a well-defined structure. One decision in writing com-
puter code is how to name objects and how to structure it. It is recommended
to follow a clear pattern, so it is easy to maintain over time and be used and
understood by others. For this book, a mixture of the author’s personal
choices with the coding style suggested by Google15 was used. The reader,
however, may choose the structure he finds more efficient and aesthetically
pleasing. Like many things in life, this is a choice. We will get back at
discussing code structure in chapter 13.

1.8 Exercises

01 - The R language was developed based on what other programming lan-
guage?

02 - What are the names of the two authors of R?

03 - Why is R special when comparing to other programming languages,
such as Python, C++, javascript and others?

15https://google.github.io/styleguide/Rguide.xml

https://google.github.io/styleguide/Rguide.xml
https://google.github.io/styleguide/Rguide.xml

1.8. EXERCISES 29

04 - What was the reason the programming language was named R?

05 - Consider the following alternatives about R and RStudio:

I - R is a mature and stable programming platform;

II - RStudio is a modern interface to R, increasing productivity;

III - R has compatibility with different programming languages;

Which alternatives are correct?

06 - Once you have R and RStudio installed, head over to the CRAN package
website16 and look for technologies you use in your work. For example, if
you use Google Sheets17 ostensibly in your work, you will soon discover
that there is a package in CRAN called googlesheets4 that interacts with
spreadsheets in the cloud.

07 - On the CRAN site you can also install the Rtools application. What is
it for?

08 - Use Google to search for R groups in your region. Check if the meetings
are frequent and, if you don’t have a major impediment, go to one of these
meetings and make new friends.

09 - Go to the RBloggers website18 and look for a topic of interest to you,
such as football (soccer) or investments (investments). Read at least three
of the found blog posts.

10 - If you work in an institution with data infrastructure, talk to the person
in charge of the IT department and verify what technologies are used. Check
if, through R, it is possible to access all tables in the databases. For now
there is no need to write code, yet. Just check if this possibility exists.

16https: //cloud.r- project.org/web/packages/available_packages_by_date.html
17https://www.google.com/sheets/about/
18https://www.r-bloggers.com/

https://cloud.r-project.org/web/packages/available_packages_by_date.html
https://cloud.r-project.org/web/packages/available_packages_by_date.html
https://www.google.com/sheets/about/
https://cloud.r-project.org/bin/windows/
https://www.google.com/search?q=R+groups+in+my+city
https://www.r-bloggers.com/
https://www.google.com/sheets/about/
https://www.r-bloggers.com/

30 CHAPTER 1. INTRODUCTION

Chapter 2
Basic Operations in R

When working with R and RStudio, there are fundamental tasks (or basic
operations) that you will be repeating many times over. In this chapter we
will look at these basic operations with RStudio, including:

• Rstudio interface and shortcuts
• basic R commands
• working with files
• working with related file extensions
• the autocomplete feature of RStudio.

Here, we will go through the initial steps from the viewpoint of someone
who has never worked with R and possibly never had contact with other
programming language. Those already familiar with the software may not
find novel information here and, therefore, I suggest skipping to the next
section. However, I recommended that you at least check the discussed
topics so you can confirm your knowledge about the features of the software
and how to use them for working smarter, and not harder. This is especially
true for RStudio, which offers several tools to increase your productivity.

2.1 Working With R
The greatest hurdle a new user faces when developing routines in R is the
format of work – the so-called development cycle. Our interaction with com-
puters has been simplified over the years and we are currently comfortable
with the point&click format. That is, if you want to perform an operation

31

32 CHAPTER 2. BASIC OPERATIONS IN R

on the computer, just point the mouse to a specific location on the screen
and click a button. Visual cues in a series of steps allow the execution of
complex tasks. Be aware, however, that this form of interaction is just one
layer above what actually happens. Behind all these clicks, there is a com-
mand being executed on your computer. Any common task such as opening
a pdf file, a spreadsheet document, directing a browser to a web page has an
underlying call to a code.

The point&click format of visual and motor interaction has its benefits in
facilitating and popularizing the use of computers. However, it is not flexi-
ble and effective when working with computational procedures such as data
analysis. A better approach would be to create a file containing several in-
structions in sequence and, in the future, simply request that the computer
execute this file using the recorded procedures. There is no need to do a
“scripted” point and click operation. You spend some time studying com-
mands and writing the program but, in the future, it will always execute the
recorded procedure in the same way.

Using scripts provides a significant gain in productivity when comparing to
a point&click type of interface. Going further, the risk of human error in
executing the procedure is almost nil, because the commands and their re-
quired sequence of execution are recorded in the text file and will always
be executed in the same way. This is one of the main reasons why pro-
gramming languages are popular in science. All the steps of a data-based
research, including results, can be replicated by different people, in different
computers.

While programming in R, the ideal format of work is to merge the mouse
movement with commands. R and RStudio have some functionality with the
mouse, but their capacity is optimized when we perform operations using
code. When a group of commands is performed in a smart way, we have an
R script that should preferably produce something important to us at the
end of its execution. In finance and economics, this can be the current price
of a stock, the value of an economic index such as inflation, the result of
academic research, among many other possibilities.

Like other software, R allows us to import data and export files. We can use
code to import a dataset stored in a local file – or the web–, analyze it and
paste the results into a technical report. Going further, we can use RStudio
and the RMarkdown technology to write a dynamic report, where code and
content are integrated. Needless to say that, by using the capabilities of R
and RStudio, you will work smarter and faster.

The final product of working with R and RStudio will be an R script that

2.2. OBJECTS IN R 33

produces digital elements for a data report. A good example of a simple
and polished R script can be found at this link1. Open it and you’ll see the
content of a file with extension .R that will download stock prices of two
companies and create a plot and a table. By the end of the book, you will
understand what is going on in the code and how it gets the job done. Even
better, you’ll be able to improve it. Soon, you’ll learn to execute the code on
your own computer. If impatient, simply copy the text content of the link
to a new RStudio R script, save it, and press control + shift + enter.

2.2 Objects in R
In R, everything is an object, and each type of object has its
properties. For example, the daily closing prices of the IBM stock over
2023 can be represented as a numerical vector, where each element is a price
recorded at the end of a trading day. Dates related to these prices can
be represented as text (string) or as a unique Date class. Finally, we can
represent the price data and the dates together by storing them in a single
object of type dataframe, which is nothing more than a table with rows and
columns.

While we represent data as objects in R, a special type is a function. It
stores a pre-established manipulation of other objects available to the user.
R has an extremely large number of functions, which enable the user to
perform a wide range of operations. For example, the basic commands of R,
available in the package {base} (R Core Team, 2023b), adds up to a total
of 1268 functions.

Each function has its own name and a programmer can write their own func-
tions. For example, the sort() function is a procedure that sorts elements
within a vector. If we wanted to sort the elements of 2, 1, 4, 3, 1, simply
insert the following command in the prompt (left bottom side of RStudio’s
screen) and press enter:
my_vec <- c(2, 1, 4, 3, 1)

sorted_vec <- sort(
x = my_vec,
decreasing = TRUE
)

1https://github.com/msperlin/afedR3/blob/main/inst/extdata/others/S_Exa
mple_Script.R

https://github.com/msperlin/afedR3/blob/main/inst/extdata/others/S_Example_Script.R
https://github.com/msperlin/afedR3/blob/main/inst/extdata/others/S_Example_Script.R
https://github.com/msperlin/afedR3/blob/main/inst/extdata/others/S_Example_Script.R

34 CHAPTER 2. BASIC OPERATIONS IN R

print(sorted_vec)

R> [1] 4 3 2 1 1

The sort() function is used with start and end parentheses. These parenthe-
ses serve to highlight the entries (inputs), that is, the information sent to the
function to produce something that will be saved in object sorted_vec. Note
that each entry is separated by a comma, as in my_fct(input1, input2,
input3, ...). We also set option decreasing = TRUE. This is a specific
directive for the sort() function to order the value from highest to lowest.

Be aware that functions are at the heart of R and we will dedicate a
large part of this book to them. You can use the available functions or write
your own. You can also publish functions as a package and let other people
use your code. We will discuss more about functions in chapter 8.

2.3 International and Local Formats
Before explaining the use of R and RStudio, it is important to highlight some
rules of formatting numbers, latin characters and dates.

decimal: Following an international notation, the decimal point in R is
defined by the period symbol (.), as in 2.5 and not a comma, as in 2,5. If this
is not the standard format in your country, you’ll have issues when importing
local data from text files. Sometimes, such as with storing data in Microsoft
Excel files, the reading function already takes care of the conversion. This,
however, is generally an exception. As a general rule of using R, only use
commas to separate the inputs of a function. Under no circumstances should
the comma symbol be used as the decimal point separator. Always give
priority to the international format because it will be compatible with the
vast majority of data.

Latin characters: Due to its international standard, R has problems under-
standing Latin characters, such as the cedilla and accents. If you can, avoid
using Latin characters in the names of your variables or files. In the content
of character objects (text), you can use them without problems as long as the
encoding of the script is correctly specified (e.g. UTF-8, Latin1). I strongly
recommend the use of the English language for writing code and defining
object names. This automatically eliminates the use of Latin characters and
facilitates the usability of the code by people outside of your country.

date format: Dates in R are structured according to the ISO 86012 format.
2https://www.iso.org/iso-8601-date-and-time-format.html

https://www.iso.org/iso-8601-date-and-time-format.html
https://www.iso.org/iso-8601-date-and-time-format.html

2.4. TYPES OF FILES IN R 35

It follows the YYYY-MM-DD pattern, where YYYY is the year in four numbers
(e.g. 2023), MM is the month as a number and DD is the day. An example
of date is 2023-12-13. This, however, may not be the case in your coun-
try. When importing local data, make sure the dates are in this format. If
necessary, you can convert any date to the ISO format. Again, while you
can work with your local format of dates in R, it is best advised to use the
international notation. The conversion between one format and another is
quite easy and will be presented in chapter 7.

If you want to learn more about your local format in R, use the following
command by typing it in the prompt and pressing enter:
Sys.localeconv()

R> decimal_point thousands_sep grouping
R> "." "" ""
R> int_curr_symbol currency_symbol mon_decimal_point
R> "BRL " "R$" ","
R> mon_thousands_sep mon_grouping positive_sign
R> "." "\003\003" ""
R> negative_sign int_frac_digits frac_digits
R> "-" "2" "2"
R> p_cs_precedes p_sep_by_space n_cs_precedes
R> "1" "1" "1"
R> n_sep_by_space p_sign_posn n_sign_posn
R> "1" "1" "1"

The output of Sys.localeconv() shows how R interprets decimal points
and the thousands separator, among other things. As you can see from the
previous output, this book was compiled using the Brazilian notation for the
currency symbol, but uses the dot point for decimals.

Be careful when modifying the format that R interprets symbols.
As a rule of thumb, if you need to use a specific format, do it sep-
arately within the context of the code. Avoid permanent changes
as you never know where such formats are being used. That way,
you can avoid unpleasant surprises in the future.

2.4 Types of Files in R
Like any other programming platform, R has a ecosystem of file extensions,
where each has a different purpose. In the vast majority of cases, however,
the work will focus mostly on a couple of types. Next, I describe the various

36 CHAPTER 2. BASIC OPERATIONS IN R

file extensions you’ll find in a day to day basis. The items in the list are
ordered by importance. Note that I omitted graphic files such as .png, .jpg,
.gif and data storage/spreadsheet files (.csv, .xlsx, ..) among others, as they
are not exclusive to R.

Files with extension .R: text files containing R code. These are the
files which you will spend most of your time. They contain the sequence
of commands that configures the main script and computational routines of
the data research. Examples: Script-stock-research.R, R-fcts.R.

Files with extension .RData or .rds: files that store data in the native
format. These files are used to save/write objects created in different sessions
into your hard drive. For example, you can use a .rds file to save a table
after processing and cleaning up the raw database. By freezing the data
into a local file, we can later load it for subsequent analysis. Examples:
cleaned-inflation-data.rds, model-results.RData.

Files with extension .Rmd and .quarto: files used for editing dynamic
documents in the RMarkdown and Quarto format. Using these files allows
the creation of documents where text and code output are integrated into
the same document. While RMarkdown is mostly related to R, the quarto
format allows for a more flexible integration of text and code for other pro-
gramming languages such as Python. In chapter 12 we have a dedicated
section for RMarkdown, which will explore this functionality in detail. Ex-
ample: investment-report.Rmd.

Files with extension .Rproj: contain files for editing projects in RStudio,
such as a new R package, a shiny application or a book. While you can use
the functionalities of RStudio projects to write R scripts, it is not a hard
requirement. For those interested in learning more about this functionality,
I suggest the Posit manual3. Example: project-retirement.Rproj.

2.5 Explaining the RStudio Screen
After installing the R and RStudio, open RStudio by double-clicking its icon.
Be aware that R also has its own interface and this often causes
confusion. In Windows, you can search for RStudio link using the Start
button and typing Rstudio.

After opening RStudio, the resulting window should look like Figure 2.1.

Note that RStudio automatically detected the installation of R and initial-
ized a session on the left side of the interface.

3https://support.posit.co/hc/en-us/articles/200526207-Using-Projects

https://support.posit.co/hc/en-us/articles/200526207-Using-Projects
https://support.posit.co/hc/en-us/articles/200526207-Using-Projects

2.5. EXPLAINING THE RSTUDIO SCREEN 37

Figure 2.1: The RStudio screen

As a first exercise, click File, New File, and R Script. A text editor should
appear on the left side of the screen. It is there that we will spend most of
our time developing code. Commands are executed sequentially, from top
to bottom. A side note, all .R files created in RStudio are just text files and
can be edited anywhere. As an exercise, use Windows’s Notepad to open
an R file. You’ll see that the raw code is the same, but without the syntax
highlighting.

Figure 2.2: Explaining the RStudio screen

38 CHAPTER 2. BASIC OPERATIONS IN R

When using RStudio, a common suggestion is to change the color
scheme to a dark mode setting. It is not just an aesthetic issue,
but also a strategy for preventing eye strain. Since you will be
spending a lot of time in front of the computer, it is smart to
change the colors of the interface to relieve your eyes of the con-
stant brightness of the screen. That way, you’ll be able to work
longer, without straining your vision. You can configure the color
scheme of RStudio by going to the option Tools, Global Options
and then Appearance. A dark color scheme that I personally like
and suggest is Ambience.

After the previous steps in RStudio, the resulting screen should look like the
image in Figure 2.2. The main items/panels are:

Script Editor: located on the left side and above the screen. This panel is
used to write scripts and functions, mostly on files with the .R extension;

R prompt: on the left side and below the script editor. It displays the
prompt, which can also be used to give commands to R. The main purpose
of the prompt is to test code and display the results of the commands entered
in the script editor;

Environment: located on the top-right of the screen. Shows all objects,
including variables and functions, currently available to the user. Also note
a History panel, which shows the history of commands previously executed
by the user;

Panel Packages: shows the packages installed and loaded by R. Here you
have four tabs: Files, to load and view system files; Plots, to view statistical
figures created in R; Help to access the help system and Viewer to display
dynamic and interactive results, such as a web page.

As an introductory exercise, let’s initialize two objects in R. Inside the
prompt (lower left side), insert these commands and press enter at the end
of each. The <- symbol is nothing more than the result of joining < (less
than) with the - (minus sign). The ' symbol represents a single quotation
mark and, in most computer keyboards, it is found under the escape (esc)
key (top left).
set x
x <- 1

set y
y <- 'My humble text'

2.6. R PACKAGES 39

If done correctly, notice that two objects are available in the environment
panel, one called x with a value of 1, and another called y with the text
content "My humble text". Also noticed how we used specific symbols to
define objects x and y. The use of double quotes (" ") or single quotes
(' ') defines objects of the class character. Numbers are defined by the
value itself. As will be discussed later, understanding R object classes are
important as each has a different behavior within the R code. After executing
the previous commands, notice that the history tab has been updated.

Now, lets show the values of x on the screen. To do this, type the following
command:
print contents of x
print(x)

R> [1] 1

The print() function is one of the main commands for displaying values in
the prompt of R. The text displayed as [1] indicates the index of the first
line number. To verify this, enter the following command, which will show
a lengthy sequence of numbers on the screen:
print a sequence
print(50:100)

R> [1] 50 51 52 53 54 55 56 57 58 59 60 61 62 63
R> [15] 64 65 66 67 68 69 70 71 72 73 74 75 76 77
R> [29] 78 79 80 81 82 83 84 85 86 87 88 89 90 91
R> [43] 92 93 94 95 96 97 98 99 100

Here, we use the colon symbol in 50:100 to create a sequence starting at 50
and ending at 100. Note that, on the left side of each line, we have the values
[1], [13], and [25]. These represent the index of the first element presented
in the line. For example, the fifteenth element of 50:100 is 64.

2.6 R Packages
One of the greatest benefits of using R is its package collection. A package
is nothing more than a group of procedures aimed at solving a particular
computational problem. R has at its core a collaborative philosophy. Users
provide their codes for others to use. And, most importantly, all packages
are free. For example, consider the scenario where a user is interested in
accessing data about historical inflation in the USA. He can install and use
an R module that is specifically designed for importing data from central
banks and research agencies.

40 CHAPTER 2. BASIC OPERATIONS IN R

Every function in R belongs to a package. When R initializes, packages
stats, graphics, grDevices, utils, datasets, methods and base are
loaded by default. This is way why we can use some functions in R without
the explicit call to a library. For example, function print is from the base
package and is available whenever you start R.

R packages can be accessed and installed from different sources. The main
being CRAN (The Comprehensive R Archive network), and Github. It’s
worth knowing that the quantity and diversity of R packages increases ev-
ery day. CRAN is the official repository of R and it is built and
maintained by the community. One of the reasons for the success of
CRAN is the quality of code. While anyone can send a package, there is
an evaluation process to ensure that certain strict rules about code format
and safety are respected. For those interested in creating and distributing
packages in CRAN, a clear roadmap on is available on the R packages site4.
The official (and complete) rules are available on the CRAN website5.

So far, I have eight package published in CRAN. In my experi-
ence, sending and publishing a package on CRAN can demand a
significant amount of work, especially in the first submission. Af-
ter that, it becomes a lot easier. Don’t be angry if your package
is rejected. My own packages were rejected several times before
entering CRAN. Listen to what the maintainers tell you and try
fixing all problems before resubmitting. If you’re having issues
that you cannot solve or find a solution on the Internet, look for
help in the R-packages mailing list6. You’ll probably be surprised
at how accessible and helpful the R community can be.

The complete list of packages available on CRAN, along with a brief de-
scription of each, can be accessed at the packages section of the R site7. A
practical way to check if there is a package that does a specific procedure
is to load the previous page and search in your browser for a keyword of
interest (e.g. “SEC data”). If there is a package that does what you want,
it is very likely that the keyword is used in the description field.

Another important source for finding packages is the CRAN Task Views8.
There you can find the collection of noteworthy packages for a given area of
expertise. See the Task Views screen in Figure 2.3.

4https://r-pkgs.org/
5https://cran.r-project.org/web/packages/policies.html
7https://cran.r-project.org/web/packages/available_packages_by_date.html
8https://cran.r-project.org/web/views/

https://r-pkgs.org/
https://cran.r-project.org/web/packages/policies.html
https://www.r-project.org/mail.html
https://cran.r-project.org/web/packages/available_packages_by_date.html
https://cran.r-project.org/web/views/
https://r-pkgs.org/
https://cran.r-project.org/web/packages/policies.html
https://cran.r-project.org/web/packages/available_packages_by_date.html
https://cran.r-project.org/web/views/

2.6. R PACKAGES 41

Figure 2.3: Task View screen

A popular alternative to CRAN is Github9. Unlike the former, Github im-
poses no restrictions on the submitted code and, because of this flexibility
and its version control system, it is a popular choice by developers. In prac-
tice, it is very common for developers to maintain a development version of a
module on Github and the official version in CRAN. When the development
version reaches a certain stage of maturity, it is then sent to CRAN.

The most interesting part about R packages is that they can be installed
directly from the prompt using the internet. To find out the current amount
of packages on CRAN, type and execute the following commands in the
prompt:
get a matrix with available packages
df_cran_pkgs <- available.packages()

find the number of packages
n_cran_packages <- nrow(df_cran_pkgs)

print it
print(n_cran_packages)

R> [1] 20186

Currently, 2023-12-13 10:32:04.071736, there are 20186 packages available on
the CRAN servers, a very impressive mark for the community of developers
as a whole.

9https://github.com/

https://github.com/
https://github.com/

42 CHAPTER 2. BASIC OPERATIONS IN R

You can also check the amount of locally installed packages in R with
the installed.packages() command:
find number of packages currently installed
n_local_packages <- nrow(installed.packages())

print it
print(n_local_packages)

R> [1] 546

In this case, the computer in which the book was compiled has 546 packages
currently installed. Notice that, even as an experienced R programmer, I’m
only using a small fraction of all packages available in CRAN!

2.6.1 Installing Packages from CRAN
Use command install.packages() to install a package locally. You only
need to do it once for each new package. As an example, we will install a
package called {readr} (Wickham et al., 2023c), that will be used in future
chapters. Note that we defined the package name in the installation as if it
were text with the use of quotation marks (" ").
install package readr
install.packages("readr")

That’s it! After executing this simple command, package {readr} (Wick-
ham et al., 2023c) will be installed and the functions related to the package
will be ready for use once the package is loaded in a script. If the installed
package is dependent on another package, R detects this dependency and
automatically installs the missing packages. Thus, all the requirements for
using the installed package are satisfied and everything will work perfectly.
Be aware, however, that some modules can require external software in the
level of the operating system. These cases are usually announced in the de-
scription of the package and an error informs that a requirement is missing.
External dependencies for R packages are not common, but they do happen.

2.6.2 Installing Packages from Github
To install a package hosted in Github, you must first install the {devtools}
(Wickham et al., 2022) package, available on CRAN:
install devtools
install.packages('devtools')

2.6. R PACKAGES 43

After that, use function devtools::install_github() to install a package di-
rectly from Github. In the following example, we will install the development
version of package {dplyr} (Wickham et al., 2023b):
install ggplot2 from github
devtools::install_github("hadley/dplyr")

Note that the username of the developer is included in the input string. In
this case, the hadley name belongs to the developer of {dplyr} (Wickham
et al., 2023b), Hadley Wickham. Throughout the book, you will notice
that this name appears several times. Hadley is a prolific and competent
developer of several popular R packages and currently works for RStudio.

Be aware that github packages are not moderated. Anyone
can send code there and the content is not independently checked.
Never install github packages without some confidence of the au-
thor’s work. Although unlikely - it never happened to me, for
example - it is possible that they have malicious code.

2.6.3 Loading Packages
Within a script, use function library() to load a package, as in the following
example.
load package readr
library(readr)

After running this command, all functions of the package will be available in
the current R session. Whenever you close RStudio or start a new session,
you’ll lose all loaded packages. This is the reason why packages are usually
loaded in the top of the script: starting from a clean memory, required
packages are sequentially loaded before the actual R code is executed.

If the package you want to use is not available, R will throw an error message.
See an example next, where we try to load a non-existing package called
unicorn.
library(unicorn)

R> Error in library(unicorn): There is no package called "unicorn"

Remember this error message. It will appear every time a package is not
found. If you got the same message when running code from this book, you
need to check what are the required packages of the example and install
them using install.packages() .

44 CHAPTER 2. BASIC OPERATIONS IN R

Alternatively, if you want to use a specific function and do not want to load
all functions from the same package, you can do it with the use of double
colons (::), as in the following example.
example of using a function without loading package
fortunes::fortune(10)

R>
R> Overall, SAS is about 11 years behind R and S-Plus in
R> statistical capabilities (last year it was about 10 years
R> behind) in my estimation.
R> -- Frank Harrell (SAS User, 1969-1991)
R> R-help (September 2003)

Here, we use function fortunes::fortune() from the package {fortunes}
(?), which shows on screen a potentially funny phrase chosen from the R
mailing list. For our example, we selected message number 10. One interest-
ing use of package {fortunes} (?) is to display a random joke every time
R starts and, perhaps, lighten up your day. As mentioned before, R is fully
customizable. You can find many tutorials on how to achieve this effect by
searching on the web for “customizing R startup”.

Another way of loading a package is by using the require() function. A call
to require() has a different behavior than a call to library() . Whenever
you try to load an uninstalled package with the library() function, it returns
an error. This means that the script stops and no further code are evaluated.
As for require() , if a package is not found, it returns an object with value
FALSE and the rest of the code is evaluated. So, in order to avoid code being
executed without its explicit dependencies, it is best advised to always use
library() for loading packages in R scripts.

The use of require() is left for loading up packages inside of functions. If you
create a custom function that requires procedures from a particular package,
you must load the package within the scope of the function. For example,
see the following code, where we create a new function called fct_example
that depends on the package {quantmod} (Ryan and Ulrich, 2023):
fct_example <- function(x){

require(quantmod)

df <- getSymbols(x, auto.assign = F)
return(df)

}

2.6. R PACKAGES 45

In this case, the first time that fct_example is called, it loads up the pack-
age {quantmod} (Ryan and Ulrich, 2023) and all of its functions. Using
require() inside a function is a good programming policy because the func-
tion becomes self-contained, making it easier to use it in the future. This
was the first time where the complete definition of a user-created function
in R is presented. Do not worry about it for now. We will explain it further
in chapter 8.

Be aware that loading a package can cause a conflict of func-
tions. For example, there is a function called filter in the dplyr
package and also in the stats package. If we load both packages
and call the filter function within the scope of the code, which
one will R use?
Well, the preference is always for the last loaded package.
This is a type of problem that can be very confusing. Fortunately,
note that R itself tests for conflicts when loading a package. Try
it out: start a new R session and load the dplyr package. You’ll
see that a message indicates that there are two conflicts with the
stats package – functions filter and lag – and four with the
base package.
A simple strategy to avoid bugs due to conflict of function is to
call a function using the actual package name. For example, if I’m
calling lag from dplyr, I can write the call as dplyr::lag. As
you can see, the package name is explicit, avoiding any possible
conflict.

2.6.4 Upgrading Packages
Over time, it is natural that packages available on CRAN are upgraded
to accommodate new features and fix bugs. Thus, it is recommended that
users update their installed packages to a new version. In R, a simple and
direct way of upgrading packages is to click the button Update located in
the package panel, lower right corner of RStudio, as shown in Figure 2.4.

The user can also update packages using commands. Simply type command
update.packages() and hit enter, as shown below.
update all installed packages
update.packages()

The command update.packages() compares the version of the installed
packages with the versions available in CRAN. If it finds any difference, the
new version is downloaded and installed. After running the command, all

46 CHAPTER 2. BASIC OPERATIONS IN R

Figure 2.4: Updating R packages

packages will be synchronized with the versions available in CRAN.

Package versioning is an extremely important topic for keeping
your code reproducible. Although it is uncommon to happen, a
new package version can change the results of your analysis. I
have a particularly unpleasant experience when a scientific article
returned from a journal review and, due to the update of one
of the R packages I used, I was unable to reproduce the results
presented in the article. In the end everything went well, but the
trauma remains.
One solution to this problem is to freeze the package versions
for each project using RStudio’s renv tool. In summary, renv
makes local copies of the packages used in the project, which have
preference over system packages. Thus, if a package is updated
in the system, but not in the project, the R code will continue to
use the older version and the R code will always run under the
same conditions.

2.7 Running Scripts from RStudio
Now, let’s copy some code into the editor’s screen (upper left side). The
result should look like Figure 2.5.

2.7. RUNNING SCRIPTS FROM RSTUDIO 47

a complete script
x <- 1
y <- "my humble text"
print(x)

R> [1] 1
print(y)

R> [1] "my humble text"

Figure 2.5: Example of an R script

After pasting all the commands in the editor, save the .R file to a
personal folder where you have read and write permissions. In Windows,
one possibility is to save it in the Documents folder with a name like
'my_first_script.R'. This saved file, which at the moment does nothing
special, records the steps of a simple algorithm that creates several objects
and shows their content.

48 CHAPTER 2. BASIC OPERATIONS IN R

2.8 Using the help files
There is no shame in seeking help. Advanced R users often seek instructions
on specific tasks, whether it is to better understand the execution details of
some functions or simply to study a new procedure. The use of the R help
system is part of the work and you should master it as soon as possible.

Within RStudio, you can get help by using the help panel in RStudio or
directly from the prompt. Simply enter the question mark next to the object
on which you want help, as in ?mean. In this case, object means is a function
and the use of the help() command will open a panel on the right side of
RStudio. Another way of opening the help page of a function is the select
the name of the function and press F1 in the keyboard.

In R, the help screen of a function is the same as shown in Figure 2.6. It
presents a general description of the function, explains its input arguments
and the format of the output. The help screen follows with references and
suggestions for other related functions. More importantly, examples of usage
are given last and can be copied to the prompt or script in order to accelerate
the learning process.

Figure 2.6: Help screen for function mean

If we are looking for help for a given text and not a function name, we can
use double question marks as in ??"standard deviation". This operation
will search for the occurrence of the term in all packages of R and it is very
useful to learn how to perform a particular task. In this case, we looked for

2.8. USING THE HELP FILES 49

the available functions to calculate the standard deviation of a vector.

As a suggestion, the easiest and most direct way to learn a new function is by
trying out the examples in the manual. This way, you can see which types
of inputs the function expects and what type of output it provides back.
Once you have it working in your code, read the help screen to understand
if it does exactly what you expected and what are the options for its use.
If the function performs the desired procedure, you can copy and paste the
example for your own script, adjusting where necessary.

Another very important source of help is the Internet itself. Sites like stack-
overflow10 and specific mailing lists and blogs, whose content is also on the
Internet, are a valuable source of information. If you find a problem that
could not be solved by reading the standard help files, the next logical step is
to seek a solution using your error message or the description of the problem
in search engines. In many cases, your problem, no matter how specific it
is, has already occurred and has been solved by other users. In fact,
it is more surprising not to find the solution for a programming problem on
the internet, than the other way around.

Whenever you ask for help on the internet, always try to 1) de-
scribe your problem clearly and 2) add a reproducible code of your
problem. Thus, the reader can easily verify what is happening by
running the example on his computer, and solving the problem.

2.8.1 RStudio shortcuts
In RStudio, there are some predefined and time-saving shortcuts for running
code from the editor. To execute an entire script, simply press control +
shift + s. This is the source command. With RStudio open, I suggest
testing this key combination and checking how the code saved in a .R file is
executed. The output of the script is shown in the prompt of R. The result
in RStudio should look like Figure 2.7.

Another way of executing code is with the shortcut control + enter, which
will only execute the line where the cursor is located. This shortcut is very
useful in developing scripts because it allows each line of the code to be
tested. As an example of usage, point the cursor to the print(x) line
and press control + enter. As you will notice, only the line print(x) was
executed and the cursor moves to the next line. Therefore, before running
the whole script, you can test it line by line and check for possible errors.

10http://stackoverflow.com/

http://stackoverflow.com/
http://stackoverflow.com/
http://stackoverflow.com/

50 CHAPTER 2. BASIC OPERATIONS IN R

Figure 2.7: Example of a R script after execution

Next, I highlight these and other RStudio shortcuts, which are also very
useful.

control + shift + s executes (source) the current RStudio file;
control + shift + enter executes the current file with echo, showing the

commands on the prompt;
control + enter executes the selected line, showing on-screen commands;
control + shift + b executes the codes from the beginning of the file to

the cursor’s location;
control + shift + e executes the codes of the lines where the cursor is

until the end of the file.

I suggest you try to create a healthy habit by using these shortcuts from day
one. Those who like to use the mouse, an alternate way to execute code is
to click the source button in the upper-right corner of the code editor.

If you want to run code in a .R file within another .R file, you can use
the source() command. For example, imagine that you have a main R
script with your data analysis and another two scripts that performs some
support operation such as importing data to R. These operations have been
dismembered as a way of organizing the code.

To run the support scripts, just call it with function source in the main
script, as in the following code:

2.9. TESTING AND DEBUGGING CODE 51

execute import script
source('01-import-data.R')

execute analysis
source('02-build-tables')

Here, all code in 01-import-data.R and 02-build-tables.R will be ex-
ecuted sequentially. This equals manually opening each file and hitting
control + shift + s.

2.9 Testing and Debugging Code
Developing code follows an observable cycle. At first, you will write a com-
mand line on a script, try it using control + enter, and check the result on
the prompt or the content of objects. A new line of code is written once the
previous line worked as expected. A moving cycle is clear, writing code is
followed by line execution, followed by result checking, modify and repeat if
necessary. This is a normal and expected process. You need to make sure
that every line of code is correctly specified before moving to the next one.
Whenever the code asks for something that is not expected (or possible), an
error occurs.

When trying to find an error in a preexisting script, R offers debugging tools
for controlling and assessing its execution. This is especially useful when
you have a long and complicated script. The simplest and easiest tool that
R and RStudio offer is code breakpoint. In RStudio, you can click on the
left side of the script editor and a red circle will appear, as in Figure 2.8.

Figure 2.8: Example of breakpoint in an R script

This red circle indicates a flag that will force the code to stop at that line.
You can use it to test existing code and check its objects at a certain part

52 CHAPTER 2. BASIC OPERATIONS IN R

of the execution. Pausing the code at a certain point might seem strange
for a starting programmer but, for large scripts, with many functions and
complex code, it is a necessity. When the execution hits the breakpoint,
the prompt will change to Browse[1]> and you’ll be able to try new code
and verify the content of all current objects. From the Console, you have
the option to continue the execution to the next breakpoint or stop it by
pressing shift+f8. The same result can be achieved using a function called
browser. Have a look:
set x
x <- 1

set y
y <- 'My humble text'

browser()

print contents of x
print(x)

The practical result is the same as using RStudio’s red circle, but it gives
you more control for the case of several commands in the same line.

2.10 Creating Simple Objects
One of the most basic and most used commands in R is the creation of
objects. As shown in previous sections, you can define an object using the
<- command, which is verbally translated to assign. For example, consider
the following code:
set x
x <- 123

set my_x, my_y and my_z in one line
my_x <- 1; my_y <- 2; my_z <- 3

We can read this code as the value 123 is assigned to x. The direction of
the arrow defines where the value is stored. For example, using 123 ->
x also works, although this is not recommended as the code becomes less
readable. Moreover, notice that you can create objects within the same line
by separating the commands using a semi-colon.

2.10. CREATING SIMPLE OBJECTS 53

Using an arrow symbol <- for object definition is a simple way
to identify R code. The reason for this choice was that, at the
time of conception of the S language, keyboards had a specific
key that directly defined the arrow symbol. This means that the
programmer only had to hit one key in the keyboard to create
new variables. Modern keyboards, however, are different. If you
find it troublesome to type this symbol, you can use a shortcut as
well. In Windows, the shortcut for the symbol <- is alt plus “-”.

Most programming languages uses a equality symbol (=) to define objects
and, often, this creates confusion. When using R, you can also define ob-
jects with =, as in x = 123, however, no one should ever recommend it. The
equality symbol has a special use within an R code as it defines function argu-
ments, as in my_l <- fct(arg1 = 1, arg2 = 3). For now, just remember
to use <- for defining objects. We will learn more about functions and using
the equality symbol in a future chapter.

The name of the object is important in R. With the exception of very specific
cases, you can name objects as you please. This freedom, however, can work
against you. It is desirable to set short object names that make sense to the
content of the script and which are simple to understand. This facilitates
the understanding of the code by other users and is part of the suggested set
of rules for structuring code. Note that all objects created in this book have
nomenclature in English and specific format, where the white space between
nouns are replaced by an underscore, as in my_x <- 1 and name_of_file
<- 'my_data_file.csv'. We will get back at code structure in chapter 13.

R executes code by looking for objects available in the environment, including
functions. You also need to be aware that R is case sensitive. That is, object
m is not the same as M. If we try to access an object that does not exist, R
will return an error message and halt the execution of the rest of the code.
Have a look:
print(z)

R> Error in eval(expr, envir, enclos): object 'z' not found

The error occurred because the object z does not exist in the current envi-
ronment. If we create a variable z as z <- 321 and repeat the command
print(z), we will not have the same error message.

54 CHAPTER 2. BASIC OPERATIONS IN R

2.11 Creating Vectors
In the previous examples, we created simple objects such as x <- 1 and x
<- 'ABC'. While this is sufficient to demonstrate the basic commands in R,
in practice, such commands are very limited. A real problem of data analysis
will certainly have a larger volume of information.

When we gather many elements of the same class, such as numeric, into
a single object, the result is an atomic vector. An example would be the
representation of a series of daily stock prices as an atomic vector of the
class numeric. Once you have a vector, you can manipulate it any way you
want.

Atomic vectors are created in R using the c() command, which comes from
the verb combine. For example, if we want to combine the values 1, 2 and 3
in a single object, we can do it with the following command:
create numeric atomic vector
x <- c(1, 2, 3)

print it
print(x)

R> [1] 1 2 3

The c() command works the same way for any other class of object, such as
character:
create character atomic vector
y <- c('text 1', 'text 2', 'text 3', 'text 4')

print it
print(y)

R> [1] "text 1" "text 2" "text 3" "text 4"

The only restriction when creating vectors is that all elements must have the
same class. If we insert data from different classes in a call to c() , R will
try to mutate all elements into the same class following its own logic. If the
conversion of all elements to a single class is not possible, an error message
is returned. Note the following example, where numeric values are set in the
first and second element of x and a character in the last element.
a mixed vector
x <- c(1, 2, '3')

2.12. KNOWING YOUR ENVIRONMENT AND OBJECTS 55

print result of forced conversion
print(x)

R> [1] "1" "2" "3"

Notice that all values in x are converted to type character. The use of
class() command confirms this result:
print class of x
class(x)

R> [1] "character"

2.12 Knowing Your Environment and Ob-
jects

After using various commands, further development of an R script requires
you to understand what objects are available and if their content are correct.
You can find this information simply by looking at the environment tab in
the upper right corner of RStudio. However, there is a command that shows
the same information in the prompt. In order to know what objects are
currently available in R’s memory, you can use the command ls() . Note the
following example:
set some objects
x <- 1
y <- 2
z <- 3

print all objects in the environment
print(ls())

R> [1] "x" "y" "z"

Objects x, y and z were created and are available in the current working
environment. If we had other objects, they would also appear in the output
to ls() .

To display the content of each object, just enter the names of objects and
press enter in the prompt:
print objects by their name
x

R> [1] 1

56 CHAPTER 2. BASIC OPERATIONS IN R

y

R> [1] 2
z

R> [1] 3

Typing the object name on the screen has the same effect as using the print()
command. In fact, when executing the sole name of a variable in the prompt
or script, R internally passes the object to the print() function.

In R, all objects belong to a class. As previously mentioned, to find the
class of an object, simply use the class() function. In the following example,
x is an object of the class numeric, y is a text (character) object and
fct_example is a function object.
set objects
x <- 1
y <- 'a'
fct_example <- function(){}

print their classes
print(class(x))

R> [1] "numeric"
print(class(y))

R> [1] "character"
print(class(fct_example))

R> [1] "function"

Another way to learn more about an object is to check its textual represen-
tation. Every object in R has this property and we can find it with function
str() :
set vec
x <- 1:10
print the textual representation of a vector
print(str(x))

R> int [1:10] 1 2 3 4 5 6 7 8 9 10
R> NULL

We find that object x is a vector of class int (integer). Function str() is

2.13. FINDING THE SIZE OF OBJECTS 57

particularly useful when trying to understand the details of a more complex
object, such as a dataframe or a list, which will be introduced in future
chapter.

2.13 Finding the Size of Objects
In R, an object size can mean different things but most likely it is defined as
the number of individual elements that constitute the object. This informa-
tion serves not only to assist the programmer in checking possible code errors
but also to know the length of iteration procedures such as loops, which will
be treated in a later chapter of this book.

In R, the size of an object can be checked with the use of four main functions:
length() , nrow() , ncol() and dim() .

Function length() is intended for objects with a single dimension, such as
atomic vectors:
create atomic vector
x <- c(2, 3, 3, 4, 2,1)

get length of x
n <- length(x)

display message
message('The length of x is ', n)

R> The length of x is 6

For objects with more than one dimension, such as a matrix, use functions
nrow() , ncol() and dim() (dimension) to find the number of rows (first di-
mension) and the number of columns (second dimension). See the difference
in usage below.
create a matrix
M <- matrix(1:20, nrow = 4, ncol = 5)

print matrix
print(M)

R> [,1] [,2] [,3] [,4] [,5]
R> [1,] 1 5 9 13 17
R> [2,] 2 6 10 14 18
R> [3,] 3 7 11 15 19
R> [4,] 4 8 12 16 20

58 CHAPTER 2. BASIC OPERATIONS IN R

calculate size in different ways
my_nrow <- nrow(M)
my_ncol <- ncol(M)
my_n_elements <- length(M)

display messages
message('The number of lines in M is ', my_nrow)

R> The number of lines in M is 4
message('The number of columns in M is ', my_ncol)

R> The number of columns in M is 5
message('The number of elements in M is ', my_n_elements)

R> The number of elements in M is 20

The dim() function shows the dimension of the object, resulting in a numeric
vector as output. This function should be used when the object has more
than two dimensions. In practice, however, such cases are rare as most data-
related problems can be solved with a bi-dimensional representation. An
example is given next:
get dimension of M
my_dim <- dim(M)

print it
print(my_dim)

R> [1] 4 5

In the case of objects with more than two dimensions, we can use the array()
function to create the object and dim() to find its size. Have a look at the
next example:
create an array with three dimensions
my_array <- array(1:9, dim = c(3, 3, 3))

print it
print(my_array)

R> , , 1
R>
R> [,1] [,2] [,3]
R> [1,] 1 4 7

2.14. SELECTING ELEMENTS FROM AN ATOMIC VECTOR 59

R> [2,] 2 5 8
R> [3,] 3 6 9
R>
R> , , 2
R>
R> [,1] [,2] [,3]
R> [1,] 1 4 7
R> [2,] 2 5 8
R> [3,] 3 6 9
R>
R> , , 3
R>
R> [,1] [,2] [,3]
R> [1,] 1 4 7
R> [2,] 2 5 8
R> [3,] 3 6 9
display its dimensions
print(dim(my_array))

R> [1] 3 3 3

2.14 Selecting Elements from an Atomic
Vector

After creating an atomic vector, you can access and select portions of it.
For example, suppose that a month ago you invested 1.000 USD in Apple
shares. You download stock price data for previous month and want to see
how much your portfolio is currently worth. In that case, you are interested
only in latest price of the stocks. All price values from other dates are not
relevant to our analysis and therefore could be safely ignored.

The selection of pieces of an atomic vector is called indexing and it is
accomplished with the use of square brackets ([]). Consider the following
example:
set x
my_x <- c(1, 5, 4, 3, 2, 7, 3.5, 4.3)

If we wanted only the third element of my_x, we use the bracket operator as
follows:

60 CHAPTER 2. BASIC OPERATIONS IN R

get the third element of x
elem_x <- my_x[3]

print it
print(elem_x)

R> [1] 4

Indexing also works using vectors containing the desired locations. If we
are only interested in the last and penultimate values of my_x, we use the
following code:
set vector with indices
my_idx <- (length(my_x)-1):length(my_x)

get last and penultimate value of my_x
piece_x_1 <- my_x[my_idx]

print it
print(piece_x_1)

R> [1] 3.5 4.3

A cautionary note: a unique property of the R language is that if
a non-existing element of an object is accessed, the program re-
turns the value NA (not available). See the next example code, where we
attempt to obtain the fourth value of a vector with only three components.
set object
my_vec <- c(1, 2, 3)

print non-existing fourth element
print(my_vec[4])

R> [1] NA

This is important because NA elements are contagious. That is, anything that
interacts with NA will also become NA. The lack of treatment of these errors
can lead to problems that are difficult to identify. In other programming
languages, attempting to access non-existing elements generally returns an
error and cancels the execution of the rest of the code.

2.14. SELECTING ELEMENTS FROM AN ATOMIC VECTOR 61

In most cases, the occurrence of NA (Not Available) values suggests
that a problem exists within the code. Always remember that NA
values indicates lack of data and are contagious: anything that
interacts with a NA value will turn into another NA. You should
become suspicious about your code quality every time
that NA values are found unexpectedly.

The use of indices is very useful when you are looking for items of a vector
that satisfy some condition. For example, if we wanted to find out all values
in my_x that are greater than 3, we could use the following command:
find all values in my_x that is greater than 3
piece_x_2 <- my_x[my_x>3]

print it
print(piece_x_2)

R> [1] 5.0 4.0 7.0 3.5 4.3

It is also possible to index elements by more than one condition using the
logical operators & and | (or). For example, if we wanted the values of my_x
greater than 2 and lower than 4, we could use the following command:
find all values of my_x that are greater than 2 and lower then 4
piece_x_3 <- my_x[(my_x > 2) & (my_x < 4)]
print(piece_x_3)

R> [1] 3.0 3.5

Likewise, if we wanted all items that are lower than 3 or greater than 6, we
use:
find all values of my_x that are lower than 3 or higher than 6
piece_x_4 <- my_x[(my_x < 3) | (my_x > 6)]

print it
print(piece_x_4)

R> [1] 1 2 7

Moreover, logic indexing also works with the interaction of different objects.
That is, we can use a logical condition in one object to select items from
another:
set my_x and my.y
my_x <- c(1, 4, 6, 8, 12)

62 CHAPTER 2. BASIC OPERATIONS IN R

my_y <- c(-2, -3, 4, 10, 14)

find all elements of my_x where my.y is higher than 0
my_piece_x <- my_x[my_y > 0]

print it
print(my_piece_x)

R> [1] 6 8 12

Looking more closely at the indexing process, notice that we are creating a
variable of the logical type. This object takes only two values: TRUE and
FALSE. Have a look in the code presented next, where we create a logical
object, print it and present its class.
create a logical object
my_logical <- my_y > 0

print it
print(my_logical)

R> [1] FALSE FALSE TRUE TRUE TRUE
find its class
class(my_logical)

R> [1] "logical"

Logical objects are very useful whenever we are testing a particular condition
on a data set. We will learn more about this and other basic classes in chapter
7.

2.15 Removing Objects from the Memory
After creating several variables, the R environment can become full of used
and disposable content. In this case, it is desirable to clear the memory to
erase objects that are no longer needed. Generally, this is accomplished at
the beginning of a script, so that every time the script runs, the memory
will be cleared before any calculation. In addition to cleaning the computer’s
memory, it also helps to avoid possible errors in the code.

For example, given an object x, we can delete it from memory with the
command rm() , as shown next:

2.16. DISPLAYING AND SETTING THE WORKING DIRECTORY63

set x
x <- 1

remove x
rm('x')

After executing the command rm('x'), the value of x is no longer available
in the R session. In practical situations, however, it is desirable to clean up
all the memory used by all objects created in R. We can achieve this goal
with the following code:
rm(list = ls())

The term list in rm(list = ls()) is a function argument of rm() that
defines which objects will be deleted. The ls() command shows all the
currently available objects. Therefore, by chaining together both commands,
we erase all current objects available in the environment. As mentioned
before, it is a good programming policy to clear the memory before running
the script. However, you should only wipe out all of R’s memory if you have
already saved the results of interest or if you can replicate them.

Clearing memory in scripts is a controversial topic. Some authors
argue that it is better not to clear the memory as this can erase
important results. My opinion is that it is important to clear
the memory at the top of the script, as long as all results are
reproducible. When you start a code in a clean state – no variables
or functions – it becomes easier to understand and solve possible
bugs.

2.16 Displaying and Setting the Working
Directory

Like other programming platforms, R always executes code in a working
directory. If no directory is set, a default value is used when R starts up.
It is based on the working directory that R searches for files to load data
or other R scripts. It is in this directory that R saves any output if we do
not explicitly define a path on the computer. This output can be a graphic
file, text or a spreadsheet. That said ,it is good policy to change the
working directory to the same place where the script is located.

The simplest way of checking the current working directory is looking at
RStudio’s prompt panel. At the top, in a small font and just below the word

64 CHAPTER 2. BASIC OPERATIONS IN R

“Console”, you’ll see the working path. Using code, we can check the current
working directory with function getwd() :
get current dir
my_dir <- getwd()

display it
print(my_dir)

R> C:/my-books/afedR-ed4/book-content

The result of the previous code shows the folder in which this book was
written and compiled.

The change of the working directory is performed with the setwd() com-
mand. For example, if we wanted to change our working directory to C:/My
Research/, simply type in the prompt:
set where to change directory
my_d <- 'C:/My Research/'

change it
setwd(my_d)

After changing the directory, importing and saving files in the C:/My Re-
search/ folder will be a lot easier.

Additionally, the easiest and most straightforward way to ensure that the
working directory is the same as the R script is using RStudio projects.
To do so, click in “File” and “New Project”. Doing so will create a .Rproj
file in the chosen directory of the project. The trick here is to create the R
scripts in the root folder of the project. Every time you open the project, it
will automatically change the working directory to where the .Rproj file is
located.

Once you are working on the same path as the script, using relative paths
is preferable. For example, if you are working in a folder that contains a
subdirectory called data, you can enter this sub-folder with the code:
change to subfolder
setwd('data')

Another possibility is to go to a previous level of the directory using .., as
in:
change to the previous level
setwd('..')

2.17. CANCELING CODE EXECUTION 65

So, if you are working in directory C:/My Research/ and execute the com-
mand setwd('..'), the current folder becomes C:/, which is one level below
C:/My Research/.

2.17 Canceling Code Execution
Whenever R is running some code, a visual cue in the shape of a small
red circle with the word stop in the right corner of the prompt will appear.
This button is not only an indicator that R is busy running code but also
a shortcut for canceling its execution. Another way to cancel an execution
is to point the mouse to the prompt and press the escape (esc) button from
the keyboard.

To try it out, run the next chunk of code in RStudio and cancel its execution
using esc.
for (i in 1:100) {

message('\nRunning code (please make it stop by hitting esc!)')
Sys.sleep(1)

}

In the previous code, we used a for loop and function Sys.sleep to dis-
play the message '\nRunning code (please make it stop by hitting
ESC!)' one hundred times, every second. For now, do not worry about
the code and functions used in the example. We will discuss the use of loops
in chapter 8.

Another very useful trick for defining working directories in R is
to use the ~ symbol. The tilda defines the “Documents” folder in
Windows, which is unique for each user. For Linux and Mac users,
the tilda defines the “home” folder (e.g. “/home/USERNAME”).
Therefore, by running setwd('~'), you will direct R to a personal
folder in any operating system.

2.18 Code Comments
In R, comments are set using the hashtag symbol #. Any text after this
symbol will not be processed. This gives you the freedom to write whatever
you want within the script. An example:
this is a comment (R will not parse it)
this is another comment (R will again not parse it)

66 CHAPTER 2. BASIC OPERATIONS IN R

x <- 'abc' # this is an inline comment

Comments are an effective way to communicate any important information
that cannot be directly inferred from the code. In general, you should avoid
using comments that are too obvious or too generic:
read CSV file
df <- read.csv('data/data_file.csv')

As you can see, it is quite obvious from the line df <- read.csv('..') that
the code is reading a .csv file. The name of the function already states that.
So, the comment was not a good one as it did not add any new information
to the user. A better approach at commenting would be to set the author,
description of the script and better explain the origin and last update of the
data file. Have a look:
Script for reproducing the results of JOHN (2019)
Author: Mr data analyst (dontspamme@emailprovider.com)
Last script update: 2020-01-10
#
File downloaded from www.site.com/data-files/data_file.csv
The description of the data goes here
Last file update: 2020-01-10

df <- read.csv('data/data_file.csv')

So, by reading the comments, the user will know the purpose of the script,
who wrote it and the date of the last edit. It also includes the origin of the
data file and the date of the latest update. If the user wants to update the
data, all he has to do is go to the referred website and download the new
file.

Another productive use of comments is to set sections in the code, such as
in:
Script for reproducing the results of JOHN (2019)
Author: Mr data analyst (dontspamme@emailprovider.com)
Last script update: 2020-01-10
#
File downloaded from www.site.com/data-files/data_file.csv
The description of the data goes here
Last file update: 2020-01-10

Clean data -------------------------

2.19. USING CODE COMPLETION WITH TAB 67

- remove outliers
- remove unnecessary columns

Create descriptive tables ----------

Estimate models --------------------

Report results ---------------------

The use of a long line of dashes (-) at each section of the code is intentional.
It causes RStudio to identify and bookmark the sections, with a link to them
at the bottom of the script editor. Test it yourself, copy and paste the above
code into a new R script, save it, and you’ll see that the sections appear on a
button between the editor and the prompt. Such a shortcut can save plenty
of time in lengthy scripts.

When you start to share code with other people, you’ll soon real-
ize that comments are essential and expected. They help transmit
information that is not available from the code. This is one way of
a discerning beginners from experienced programmers. Contrary
to popular belief, it is likely that someone with experience in pro-
gramming will be very communicative in its comments (sometimes
too much!). A note here, throughout the book you’ll see that the
code comments are, most of the time, a bit obvious. This was
intentional as clear and direct messages are important for new
users, which is part of the audience of this book.

2.19 Using Code Completion with tab
A very useful feature of RStudio is code completion, an editing tool that
facilitates the search of object names, packages, function arguments, and
files. Its usage is very simple. After you type any first letter in the keyboard,
just press tab (left side of the keyboard, above capslock) and a number of
options will appear. See Figure 2.9 where, after entering the f letter and
pressing tab, a small window appears with a list of object names that begin
with that letter.

The autocomplete feature is self-aware and will work differently depending on
where it is called. As such, it works perfectly for searching for packages. For

68 CHAPTER 2. BASIC OPERATIONS IN R

Figure 2.9: Usage of autocomplete for object name

that, type library() in the prompt or editor, place the cursor in between
the parentheses and press tab. The result should look something like Figure
2.10, shown next.

Figure 2.10: Usage of autocomplete for packages

Note that a description of the package or object is also offered by the code
completion tool. This greatly facilitates the day to day work as the memo-
rization of package names and R objects can be challenging. The use of the
tab decreases the time to look up names, also avoiding possible errors.

The use of this tool becomes even more beneficial when objects and functions
are named with some sort of pattern. In the rest of the book, you will notice
that objects tend to be named with the prefix my, as my_x, my_num, my_df.
Using this naming rule (or any other) facilitates the lookup for the names of
objects created by the user. You can just type my_, press tab, and a list of
objects will appear.

2.19. USING CODE COMPLETION WITH TAB 69

As mentioned in the previous section, you can also find files and folders
on your computer using tab. To try it, write the command my_file <-
"" in the prompt or a script, point the cursor to the middle of the quotes
and press the tab key. A screen with the files and folders from the current
working directory should appear, as shown in Figure 2.11.

Figure 2.11: Usage of autocomplete for files and folders

The use of autocomplete is also possible for finding the name and description
of function arguments. To try it out, write message() and place the mouse
cursor inside the parentheses. After that, press tab. The result should be
similar to Figure 2.12. By using tab inside of a function, we have the names
of all arguments and their description – a mirror of the information found
in the help files.

Likewise, you can also search for a function within a package with tab. For
that, simply type the name of the package followed by two commas, as in
readr::, and press tab. The result should be similar to Figure 2.13

Summing up, using code completion will make you more productive. You’ll
find names of files, objects, arguments, and packages much faster. Use it as
much as you can.

Autocomplete is one of the most important tools of RStudio, help-
ing users to find object names, locations on the hard disk, pack-
ages and functions. Get used to using the tab key and, soon
enough, you’ll see how much the autocomplete tool can help you
write code quickly, and without typos.

70 CHAPTER 2. BASIC OPERATIONS IN R

Figure 2.12: Usage of autocomplete for function arguments

Figure 2.13: Usage of autocomplete for finding functions within a pack-
age

2.20. INTERACTING WITH FILES AND THE OPERATING SYSTEM71

2.20 Interacting with Files and the Oper-
ating System

As you are learning R, soon enough you’ll find a data-related problem that
requires some interaction with files on the computer, either by creating new
folders, decompressing and compressing files, listing and removing files from
the hard drive of the computer or any other type of operation. R has full
support for such type of operations. You can automate any type of computer
task within an R script, if so needed.

In this section we will give preference to functions from package {fs} (Hes-
ter et al., 2023), which provides several routines for interacting with files
and folders. Be aware, however, that the base package also offers similar
functions.

2.20.1 Listing Files and Folders
To list files from your computer, use function fs::dir_ls() , where the path
argument sets the directory to list the files from. For the compilation of
the book, I’ve created a directory called data. This folder contains all the
data needed to recreate the book’s examples. You can check the files in the
sub-folder data with the following code:
list files in data folder
my_files <- fs::dir_ls(path = "data")
print(my_files)

R> data/FileWithLatinChar_ISO-8859-9.txt
R> data/FileWithLatinChar_UTF-8.txt
R> data/Financial Sample.xlsx
R> data/MySQLiteDatabase.SQLITE
R> data/SP500-Stocks-WithRet.rds
R> data/SP500-Stocks_long.csv
R> data/SP500-Stocks_wide.csv
R> data/SP500_long_yearly_2010-01-01_2019-11-04.rds
R> data/SQLite_db.SQLITE
R> data/UCI_Credit_Card.csv
R> data/price-data.csv
R> data/pride_and_prejudice.txt
R> data/temp.txt
R> data/temp_file.xlsx
R> data/top25babynames-by-sex-2005-2017.csv

There are several files with different extensions in this directory. These files

72 CHAPTER 2. BASIC OPERATIONS IN R

contain data that will be used in future chapters.

You can also list the files recursively over inner folders, that is, list all files
from all sub-folders contained in the original path. To check it, try using
the following code in your computer:
list all files for all subfolders (IT MAY TAKE SOME TIME...)
fs::dir_ls(path = getwd(), recurse = TRUE)

The previous command will list all files in the current folder and sub-folders.
Depending on the current working directory, it may take some time to run
it all (you can cancel it anytime by pressing esc in your keyboard).

You can also set what type of output you need. For example, if you want
only the available folders, and not files, use input type = "directory":
store names of directories
my_dirs <- fs::dir_ls(

path = getwd(),
type = "directory")

print it
print(my_dirs)

R> /tmp/RtmpCpmYn0/compile-book-site--4f56560405e0/_book
R> /tmp/RtmpCpmYn0/compile-book-site--4f56560405e0/blocks
R> /tmp/RtmpCpmYn0/compile-book-site--4f56560405e0/data
R> /tmp/RtmpCpmYn0/compile-book-site--4f56560405e0/ebook files
R> /tmp/RtmpCpmYn0/compile-book-site--4f56560405e0/eqs
R> /tmp/RtmpCpmYn0/compile-book-site--4f56560405e0/mem_cache
R> /tmp/RtmpCpmYn0/compile-book-site--4f56560405e0/quandl_cache
R> /tmp/RtmpCpmYn0/compile-book-site--4f56560405e0/resources
R> /tmp/RtmpCpmYn0/compile-book-site--4f56560405e0/tabs
R> /tmp/RtmpCpmYn0/compile-book-site--4f56560405e0/text-to-reuse

The output shows the directories used to write the book. It includes the
directory with the data (“./data”), resources (“./resources”) among others.
In this same directory, you can find the chapters of the book, organized by
files and based on the RMarkdown language (.Rmd file extension):
list all files with the extension .Rmd
fs::dir_ls(glob = "*.Rmd")

R> 00a-About-new-edition.Rmd
R> 00b-Preface.Rmd
R> 01-Introduction.Rmd

2.20. INTERACTING WITH FILES AND THE OPERATING SYSTEM73

R> 02-Basic-operations.Rmd
R> 03-Research-scripts.Rmd
R> 04-Importing-exporting-local.Rmd
R> 05-Importing-internet.Rmd
R> 06-Data-structure-objects--ONLINE.Rmd
R> 07-Basic-objects--ONLINE.Rmd
R> 08-Programming--ONLINE.Rmd
R> 09-Cleaning-data--ONLINE.Rmd
R> 10-Figures--ONLINE.Rmd
R> 11-Models--ONLINE.Rmd
R> 12-Reporting-results--ONLINE.Rmd
R> 13-Optimizing-code--ONLINE.Rmd
R> 14-References.Rmd
R> _Welcome.Rmd
R> afedR_ed03_ONLINE.Rmd
R> index.Rmd

The files presented above contain all the contents of this book, including this
specific paragraph, located in file 02-Basic-operations.Rmd!

2.20.2 Deleting Files and Directories
You can also use an R session to delete files and directories from your com-
puter. This might come in handy when dealing with disposable data files.
Use these commands with responsibility. If not careful, you can easily break
the operating system of your computer.

You can delete files with command fs::file_delete() :
create temporary file
my_file <- 'data/tempfile.csv'
write.csv(x = data.frame(x=1:10),

file = my_file)

delete it
fs::file_delete(my_file)

To delete directories and all their elements, we use fs::dir_delete() :
create temp dir
fs::dir_create('temp')

create a file inside of temp
my_file <- 'temp/tempfile.csv'

74 CHAPTER 2. BASIC OPERATIONS IN R

write.csv(x = data.frame(x=1:10),
file = my_file)

fs::dir_delete('temp')

If needed, we can check if the deletion of a directory was successful with
command fs::dir_exists() :
fs::dir_exists('temp')

R> temp
R> FALSE

As expected, the directory was not found.

2.20.3 Downloading Files from the Internet
We can also use R to download files from the Internet with function down-
load.file() . See the following example, where we download an Excel spread-
sheet from Microsoft’s website:
set link
link_dl <- 'go.microsoft.com/fwlink/?LinkID=521962'
local_file <- 'data/temp_file.xlsx' # name of local file

download.file(url = link_dl,
destfile = local_file)

Using download.file() is quite handy when you are working with Internet
data that is constantly being updated. In the script, we can download new
data in every execution, making sure that our analysis is based on current
information.

One trick worth knowing is that you can also download files from cloud
services such as Dropbox11 and Google Drive12. So, if you need to send a
data file to a large group of people and update it frequently, just pass the
file link from the cloud service. This way, any local change in the data file
in your computer will be reflected for all users with the file link.

11https://www.dropbox.com/
12https://drive.google.com/

https://www.dropbox.com/
https://drive.google.com/
https://www.dropbox.com/
https://drive.google.com/

2.20. INTERACTING WITH FILES AND THE OPERATING SYSTEM75

Needless to say, be very careful with commands
fs::file_delete and fs::dir_delete, especially when us-
ing recursion (recurse = TRUE). One simple mistake and
important parts of your hard drive can be erased, breaking your
operating system. Be aware that R permanently deletes files
and folder, without any simple way to restore them.

2.20.4 Using Temporary Files and Directories
Every time a user starts an R session, a new temporary folder is created
in your hard drive. This folder is used to store any disposable files and
folders generated by R. The location of this directory is available with
fs::path_temp() :
windows_tempdir <- fs::path_temp()
print(windows_tempdir)

R> C:\Users\msperlin\AppData\Local\Temp\RtmpEGt3Q7

The name of the temporary directory, in this case 'RtmpEGt3Q7', is unique
and randomly defined at the start of every new R session. This means that
every R session is linked to an unique temporary folder. If two R sessions are
created, as in starting two RStudio sessions, two temporary folders will be
available, each with an unique name. When the computer is rebooted,
all temporary directories are deleted.

The same dynamic is found for file names. If you want to use a temporary
random name for some reason, use fs::file_temp() :
windows_tempfile <- fs::file_temp()
message(windows_tempfile)

R> C:\Users\msperlin\AppData\Local\Temp\RtmpEGt3Q7\file19917e5fbc7e

You can also set its extension and name:
windows_tempfile <- fs::file_temp(

pattern = 'temp_',
ext = '.csv'
)

message(windows_tempfile)

R> C:\Users\msperlin\AppData\Local\Temp\RtmpEGt3Q7\temp_19913e1dafe5.csv

As a practical case of using temporary files and folders, let’s download the

76 CHAPTER 2. BASIC OPERATIONS IN R

Excel worksheet from Microsoft into a temporary folder and read its content
for the first five rows:
set link
link_dl <- 'go.microsoft.com/fwlink/?LinkID=521962'
local_file <- fs::file_temp(ext = '.xlsx')

download.file(url = link_dl,
destfile = local_file)

df_msft <- readxl::read_excel(local_file)

print(head(df_msft))

R> # A tibble: 6 x 16
R> Segment Country Product `Discount Band` `Units Sold`
R> <chr> <chr> <chr> <chr> <dbl>
R> 1 Government Canada Carretera None 1618.
R> 2 Government Germany Carretera None 1321
R> 3 Midmarket France Carretera None 2178
R> 4 Midmarket Germany Carretera None 888
R> 5 Midmarket Mexico Carretera None 2470
R> 6 Government Germany Carretera None 1513
R> # i 11 more variables: `Manufacturing Price` <dbl>,
R> # `Sale Price` <dbl>, `Gross Sales` <dbl>,
R> # Discounts <dbl>, Sales <dbl>, COGS <dbl>, Profit <dbl>,
R> # Date <dttm>, `Month Number` <dbl>, `Month Name` <chr>,
R> # Year <chr>

The example Excel file contains the sales report of a company. Do notice
that the imported file becomes a dataframe in our R session, a table like an
object with rows and columns.

By using fs::file_temp() , we do not need to delete (or worry) about the
downloaded file because it will be removed from the computer’s hard disk
when the system is rebooted.

2.21 Exercises

01 - In RStudio, create a new script and save it in a personal folder. Now,
write R commands in the script that define two objects: one holding a
sequence between 1 and 100 and the other with the text of your name (ex.

2.21. EXERCISES 77

‘Richard’). Execute the whole script with the keyboard shortcuts.

02 - In the previously created script, use function message to display the
following phrase in R’s prompt:"My name is".

03 - Within the same script, show the current working directory (see function
getwd, as in print(getwd())). Now, change your working directory to
Desktop (Desktop) and show the following message on the prompt screen: 'My
desktop address is'. Tip: use and abuse of RStudio’s autocomplete
tool to quickly find the desktop folder.

04 - Use R to download the compressed zip file with the book material,
available at this link13. Save it as a file in the temporary session folder (see
function fs::file_temp()).

05 - Use the unzip function to unzip the downloaded file from previous ques-
tion to a directory called 'afedR-files' inside the “Desktop” folder. How
many files are available in the resulting folder? Tip: use the recursive =
TRUE argument with fs::dir_ls to also search for all available subdirecto-
ries.

06 - Every time the user installs an R package, all package files are
stored locally in a specific directory of the hard disk. Using command
Sys.getenv('R_LIBS_USER') and fs::dir_ls, list all the directories
in this folder. How many packages are available in this folder on your
computer?

07 - In the same topic as previous exercise, list all files in all subfolders in
the directory containing the files for the different packages (see command
Sys.getenv('R_LIBS_USER')). On average, how many files are needed for
each package?

13https://www.msperlin.com/files/afedr-files/afedR-code-and-data.zip

https://www.msperlin.com/files/afedr-files/afedR-code-and-data.zip
https://www.msperlin.com/files/afedr-files/afedR-code-and-data.zip

78 CHAPTER 2. BASIC OPERATIONS IN R

08 - Use the install.packages function to install the yfR package on your
computer. After installation, use function yf_get() to download price data
for the IBM stock in the last 15 days. Tip: use function Sys.Date() to find
out the current date and Sys.Date()- 15 to calculate the date located 15
days in the past.

09 - The cranlogs package allows access to downloads statistics of
CRAN packages. After installing cranlogs on your computer, use the
cranlogs::cran_top_downloads function to check which are the 10 most
installed packages by the global community in the last month. Which
package comes first? Tip: Set the cran_top_downloads function input to
when = 'last-month'. Also, be aware that the answer here may not be the
same as you got because it depends on the day the R code was executed.

10 - Using the devtools package, install the development version of the
ggplot2 package, available in the Hadley Hickman repository. Load the
package using library and create a simple figure with the code qplot(y =
rnorm(10), x = 1:10).

11 - Using your programming ability check on your computer which folder,
from the “Documents” directory (shortcut = ~), has the largest number of
files. Display the five folders with the largest number of files on R’s prompt.

https://github.com/hadley

Chapter 3
Writing Research Scripts

So far we learned how to use R for basic tasks such as interacting with the
computer, creating simple vectors and downloading files from the internet.
At this point, it is important to discuss the structure of a research script and,
more specifically, how to organize our work in a efficient manner. As the R
code base becomes larger and more complex, organization is a necessity.
In this chapter, I will suggest a way to organize files and folders. So, I
recommend that you follow these guidelines – or at least your own version
of them – in every project you work on.

3.1 Stages of Research
Unlike other software designs, every script in data analysis follows through
clear and consecutive steps to achieve its goal.

1. Importation of data: Raw (original) data is imported from a local
file or the internet. At this stage, no manual data manipulation should
happen. The raw data must be imported “as it is”.

2. Cleaning and structuring the data: The raw data imported in the
previous step is cleaned and structured within the needs of the anal-
ysis. Abnormal records and errors in observations can be removed
or treated. The structure of the data can also be manipulated, bind-
ing (merging) different datasets and calculating variables of interest.
Preferably, at the end of this stage, there should be a final collection
of clean data.

79

80 CHAPTER 3. WRITING RESEARCH SCRIPTS

3. Visual analysis and hypothesis testing: After cleansing and struc-
turing the data, the work continues with the visual analysis of the data
and hypothesis testing. Here, you can create graphical representations
of the data for your audience and use statistical tools, such as econo-
metric models, to test a particular hypothesis. This is the heart of the
research and the stage most likely to take more development time.

4. Reporting the results: The final stage of a research script is report-
ing the results, that is, exporting selected tables and figures from R
to a text processing software such as Latex, Writer (LibreOffice) or
Word (Microsoft).

Each of the previous steps can be structured in a single .R script or in several
separate files. Using multiple files is preferable when the first steps of the
research demand significant processing time. For example, when importing
and organizing a large database, it is worth the trouble to separate the code
in different files. It will be easier to find bugs and maintain the code. Each
script will do one job, and do it well.

A practical example would be the analysis of a large dataset of financial
transactions. Importing and cleaning the data takes plenty of computer
time. A smart organization is to insert these primary data procedures in
a .R file and save the final objects of this stage in an external file. This
local archive serves as a bridge to the next step, hypothesis testing, where
the previously created file with clean data is imported. Every time a change
is made to the hypothesis testing script, it is unnecessary to rebuild the
whole dataset. This simple organization of files saves a lot of time. The
underlying logic is simple, isolate the parts of the script that demand more
computational time – and less development –, and connect them to the rest
of the code using external data files.

If you are working with multiple files, one suggestion is to create
a naming structure that informs the steps of the research in an
intuitive way. An example would be to name the data import-
ing code as 01-import-and-clean-data.R, the modeling code as
02-estimate-and-report-models.R and so on. The practical effect is
that using a number in the first letter of the filenames clarifies the order of
execution. We can also create a master script called 0-run-it-all.R or
0-main.R that runs (source) all other scripts. So, every time we make an
update to the original data, we can simply run 0-run-it-all.R and will
have the new results, without the need to execute each script individually.

3.2. FOLDER STRUCTURE 81

3.2 Folder Structure
A proper folder structure also benefits the reproducibility and organization
of research. In simple scripts, with a small database and a low number
of procedures, it is unnecessary to spend much time thinking about the
organization of files. This is certainly the case for most of the code in
this book. More complex programs, with several stages of data cleaning,
hypothesis testing, and several sources of data, organizing the file structure
is essential.

A suggestion for an effective folder structure is to create a single directory
and, within it, create subdirectories for each input and output element. For
example, you can create a subdirectory called data, where all the original
data will be stored, a directory fig and tables, where figures and tables
with final results will be exported. If you are using many custom-written
functions in the scripts, you can also create a directory called r-fcts and
save all files with function definitions at this location. As for the root of the
directory, you should only find the main research scripts there. An example
of a file structure that summarizes this idea is:

/Capital Markets and Inflation/
/data/

stock_indices.csv
inflation_data.csv

/resources/figs/
SP500_and_inflation.png

/tables/
Table1_descriptive_table.tex
Table2_model_results.tex

/r-fcts/
fct_models.R
fct_clean_data.R

0-run-it-all.R
1-import-and-clean-data.R
2-run-research.R

The research code should also be self-contained, with all files available within
a sub-folder of the root directory. If you are using many different R pack-
ages, it is advisable to add a comment in the first lines of 0-run-it-all.R
that indicates which packages are necessary to run the code. The most
friendly way to inform it is by adding a commented line that installs all
required packages, as in #install.packages('pkg1', 'pkg2', ...). So,
when someone receives the code for the first time, all he (or she) needs to
do is uncomment the line and execute it. External dependencies and steps

82 CHAPTER 3. WRITING RESEARCH SCRIPTS

for their installation should also be informed.

The organization of the code directory facilitates collaboration and repro-
ducibility. If you need to share the code with other researchers, simply
compress the directory to a single file and send it to the recipient. After
decompressing the file, the structure of the folder immediately informs the
user were to change the original data, the order of execution of the scripts
in the root folder, and where the outputs are saved. The same benefit goes
when you reuse your code in the future, say three years from now. By work-
ing smarter, you will be more productive, spending less time with repetitive
and unnecessary steps for “figuring out” how the code works.

3.3 Important Aspects of a Research
Script

In this section I’ll be making some suggestions for how you can conduct
data analysis with R. Making it clear, these are personal positions from my
experience as a researcher and teacher. Many points raised here are specific
to the academic environment but can be easily extended to the practice of
data research in the industry. In short, these are suggestions I wish I knew
when I first started my career.

Firstly, know your data!. I can’t stress enough how this is important!
The first instinct of every passionate data analyst when encountering a new
set of rich information is to immediately import it into R and perform an
analysis. However, a certain level of caution is needed. Every time you get
your hands on a new set of data, ask yourself how much you really know:

• How was the data collected? To what purpose?
• What information does each column of the table represents? What

are the details often missed?
• How do the available data compare with data used in other studies?
• Is there any possibility of bias within the data collection?

Furthermore, you need to remember that the ultimate goal of any research
is communication. Thus, it is very likely that you will report your results to
people who will have an informed opinion about the subject, including the
sources and individualities of different datasets. The worst case scenario is
when a research effort of three to six months in between coding and writing
is nullified by a simple lapse in data checking. Unfortunately, this is not
uncommon.

3.3. IMPORTANT ASPECTS OF A RESEARCH SCRIPT 83

As an example, consider the case of analyzing the long term performance of
companies in the retail business. For that, you gather a recent list of available
companies and download financial records about their revenue, profit and
adjusted stock price for the past twenty years. Well, the problem here is in
the selection of the companies. By selecting those that are available today,
you missed all companies that went bankrupt during the 20 year period.
That is, by looking only at companies that stayed active during the whole
period, you indirectly selected those that are profitable and presented good
performance. This is a well-known effect called survival bias. The right way
of doing this research is gathering a list of companies in the retail business
twenty years ago and keep track of those that went bankrupt and those that
stayed alive.

The message is clear. Be very cautious about the data you are using.
Your raw tables stand at the base of the research. A small detail that goes
unnoticed can invalidate your whole work. If you are lucky and the database
is accompanied by a written manual, break it down to the last detail. If
the information is not clear, do not be shy about sending questions to the
responsible party. Likewise, if there is an inevitable operational bias in your
dataset, be open and transparent about it.

The second point here is the code. After you finish reading this book, you
will have the knowledge to conduct research with R. The computer will be
a powerful ally in making your research ideas come true, no matter how
gigantic they may be. However, a great power comes with great re-
sponsibility. Said that, you need to be aware that a single misplace line in
a code can easily bias and invalidate your analysis.

Remember that analyzing data is your profession and your reputation is
your most valuable asset. If you have low confidence in the produced
code, do not publish or communicate your results. The code and its results
is entirely your responsibility. Check it as many times as necessary. Always
be skeptical about your own work:

• Do the descriptive statistics of the variables faithfully report the
database?

• Is there any relationship between the variables that can be verified in
the descriptive table?

• Do the main findings of the research make sense to the current litera-
ture of the subject? If not, how to explain it?

• Is it possible that a bug in the code has produced the results?

I’m constantly surprised by how many studies submitted to respected jour-
nals can be denied publication based on a simple analysis of the descriptive

84 CHAPTER 3. WRITING RESEARCH SCRIPTS

table. Basic errors in variable calculations can be easily spotted by a trained
eye. The process of continuous evaluation of your research will not only make
you stronger as a researcher but will also serve as practice for peer evaluation,
much used in academic research. If you do not have enough confidence to
report results, test your code extensively. If you have already done so and
are still not confident, identify the lines of code you have doubts and seek
help with a colleague or your advisor, if there is one. The latter is a strong
ally who can help you in dealing with problems he/she already had.

All of the research work is, to some extent, based on existing work. Today
it is extremely difficult to carry out ground-breaking research. Knowledge is
built in the form of blocks, one over the other. There is always a collection of
literature that needs to be consulted. Therefore, you should always compare
your results with the results already available in the subject. If the main
results are not similar to those found in the literature, one should ask himself:
could a code error have created this result?

I clarify that it is possible that the results of research differ from those of
the literature, but the opposite is more likely. Knowledge of this demands
care with your code. Bugs and code problems are quite common and can
go unnoticed, especially in early versions of scripts. As a data analyst, it is
important to recognize this risk and learn to manage it.

3.4 Exercises

01 - Imagine a survey regarding your household budget over time. Financial
data is available in electronic spreadsheets separated by month, for 10 years.
The objective of the research is to understand if it is possible to purchase
a real state property in the next five years. Within this setup, detail in
text the elements in each stage of the study, from importing the data to the
construction of the report.

02 - Based on the study proposed earlier, create a directory structure on your
computer to accommodate the study. Create mock files for each subdirectory
(see directory structure at section 3.2). Be aware you can create mock files
and direction all in R (see functions cat and fs::dir_create).

Chapter 4
Importing Data from Local Files

In this chapter we’ll learn to import and export data available as local files in
the computer. Although the task is not particularly difficult, a data analyst
should understand the different characteristics of file formats and how to
take advantage of it. While some data formats are best suited for sharing
and collaboration, others can offer a significant boost in reading and writing
speed.

Here we will draw a comprehensive list of data file formats in R, including:

• text data with comma-separated values (csv files);
• spreadsheet data from Excel (xlsx files);
• R native data files (RData and rds files);
• Lightning Fast Serialization of data frames (FST) format (fst files);
• SQLite;
• unstructured text data.

The previous packages and functions are sufficient for getting most of the
work done. Nevertheless, it is worth mentioning that R can also import data
from other softwares such as SPSS, Stata, Matlab, among many others. If
that is your case, I suggest a thorough study of package {foreign} (R Core
Team, 2023a).

4.1 The path of local files
The first lesson in importing data from local files is that the location of the
file must be explicitly stated in the code. The path of the file is then passed

85

86 CHAPTER 4. IMPORTING DATA FROM LOCAL FILES

to a function that will read the file. The best way to work with paths is to
use the autocomplete feature of RStudio (see section 2.19). An example of
full path is:
my_file <- 'C:/My Research/data/price-data.csv'

Note the use of forwarding slashes (/) to designate the file directory. Relative
references also work, as in:
my_file <- 'data/price-data.csv'

Here, it is assumed that, in the current working folder, there is a directory
called data and, inside of it, exists a file called price-data.csv. If the file
path is simply its name, such as in my_file <- 'price-data.csv', it is
implicitly assumed that the file is located in the root of the working directory.
From the previous chapter, recall that you can use setwd() to change the
working folder to where the work is being done and simply create and use
the “Projects” feature of RStudio, which automatically sets the working
directory in the same location as the .Rproj file.

I again reinforce the use of tab and the autocomplete tool of
RStudio. It is much easier and practical to find files on your
computer’s hard disk using tab navigation than to copy and paste
the address from your file explorer. To use it, open double or
quotes in RStudio, place the mouse cursor in between the quotes
and press tab.

Going further, another very important point here is that the data from the
file will be imported and exported as an object of type dataframe.
That is, a table contained in an Excel or .csv file will become a dataframe
object in R. When we export data, the most common format is this same
type of object. Conveniently, dataframes are nothing more than tables,
with rows and columns.

Each column in the dataframe will have its own class, the most common
being numeric (numeric), text (character), factor (factor) and date (Date).
When importing the data, it is imperative that each column is rep-
resented in the correct class. A vast amount of errors can be avoided
by simply checking the column classes in the dataframe resulting from the
import process. For now, we only need to understand this basic property of
dataframes. We will study the details of this object in chapter 6.

4.2. CSV FILES 87

4.2 csv files
Consider a data file called CH04_SP500.csv, available from the book pack-
age. It contains daily closing prices of the SP500 index from 2010-01-04 until
2022-12-27. We will now use package {afedR3} (Perlin, 2023b) for finding
the file and copying it to your local folder. If you followed the instructions
in the book preface chapter, you should have package {afedR3} (Perlin,
2023b) already installed.

Once you install package {afedR3} (Perlin, 2023b), file CH04_SP500.csv
and all other data files used in the book are downloaded from Github. The
package also includes functions for facilitating the reproduction of code ex-
amples. Command afedR3::data_path() will return the local path of a
data file by looking up its name.

Let’s copy CH04_SP500.csv to your “My Documents” folder with the fol-
lowing code using the tilde (~) shortcut:
my_f <- afedR3::data_path('CH04_SP500.csv')
fs::file_copy(my_f, '~')

Now, if it is your first time working with .csv files, use a file browser (“File
Explorer” in Windows) and open CH04_SP500.csv in the “My Documents”
folder with any text editor software such as Notepad. The first lines of
CH04_SP500.csv, also called header lines, show the column names. Follow-
ing international standards, rows are set using line breaks, and all columns
are separated by commas (,). Next we show the textual content of the first
ten lines of CH04_SP500.csv:

R> ref_date,price_close
R> 2010-01-04,1132.98999
R> 2010-01-05,1136.52002
R> 2010-01-06,1137.140015
R> 2010-01-07,1141.689941
R> 2010-01-08,1144.97998
R> 2010-01-11,1146.97998
R> 2010-01-12,1136.219971
R> 2010-01-13,1145.680054
R> 2010-01-14,1148.459961

The data in CH04_SP500.csv is organized in a standard way, and we should
have no problem importing it in R. However, you should be aware this is
not always the case. So, if you want to avoid the most common issues when
importing data from csv files, I suggest you follow these steps:

88 CHAPTER 4. IMPORTING DATA FROM LOCAL FILES

1) Check the existence of text before the actual data. A standard .csv
file will only have the contents of a table but, sometimes, you will find
a header text with metadata (extra information about the dataset). If
necessary, you can control how many lines you skip in the csv reading
function;

2) Verify the existence of names for all columns and if those names are
readable;

3) Check the symbol for column separation. Normally it is a comma, but
you never know for sure;

4) For the numerical data, verify the decimal symbol. R will expect it
to be a dot. If necessary, you can adjust this information in the code,
making sure R knows how to correctly parse numerical data.

5) Check the encoding of the text file. Normally it is one of UTF-8,
Latin1 (ISO-8859) or Windows 1252. These are broad encoding for-
mats and should suffice for most cases. Whenever you find strange
symbols in the text columns of the resulting dataframe, the problem
is probably due to a mismatch between the encoding of the file and R.
Windows users can check the encoding of a text file by opening it in
Notepad++1. The encoding format is available in the bottom right
corner of the Notepad++ editor. Linux and Mac users can find the
same information in any advanced text editor software such as Kate2.

Whenever you find an unexpected text structure in a .csv file, use
the arguments of the csv reading function to import the informa-
tion correctly. As a rule of thumb, never modify raw data
manually. Its far more efficient to use R code to deal with dif-
ferent structures of .csv files. It takes a bit of work, but such a
policy will save you a lot of time in the future as, in a couple of
months, you are unlikely to remember how you manually cleaned
that csv file in order to import it more easily in your R session.

4.2.1 Importing Data
The {base} (R Core Team, 2023b) package includes a native function called
read.csv() for importing data from .csv files. However, we will prefer
the {tidyverse} (Wickham, 2023) alternative, readr::read_csv() , as it

1https://notepad-plus-plus.org/
2https://kate-editor.org/

https://notepad-plus-plus.org/
https://kate-editor.org/
https://notepad-plus-plus.org/
https://kate-editor.org/

4.2. CSV FILES 89

is more efficient and easier to work with. In short, the benefit of using
readr::read_csv() is that it reads the data very quickly, with clever inter-
nal rules for defining the classes of imported columns.

This is the first package from the {tidyverse} (Wickham, 2023) that we
will use. Before doing so, it is necessary to install it in your R session. A
simple way of installing all {tidyverse} (Wickham, 2023) packages as a
bundle is as follows:
install.packages('tidyverse')

After running the previous code, all {tidyverse} (Wickham, 2023) packages
will be installed on your computer. Once it finishes, let’s load it.
load library
library(tidyverse)

Back to importing data from .csv files, to load the contents of file
CH04_SP500.csv in R, use the readr::read_csv() function.
set file to read
my_f <- afedR3::data_path('CH04_SP500.csv')

read file
my_df_sp500 <- readr::read_csv(my_f)

print it
print(head(my_df_sp500))

R> # A tibble: 6 x 2
R> ref_date price_close
R> <date> <dbl>
R> 1 2010-01-04 1133.
R> 2 2010-01-05 1137.
R> 3 2010-01-06 1137.
R> 4 2010-01-07 1142.
R> 5 2010-01-08 1145.
R> 6 2010-01-11 1147.

As previously mentioned, the contents of the imported file becomes
a dataframe object in R, and each column of a dataframe has a
class. We can check the classes of object my_df_sp500 using function
dplyr::glimpse() :
Check the content of dataframe
dplyr::glimpse(my_df_sp500)

90 CHAPTER 4. IMPORTING DATA FROM LOCAL FILES

R> Rows: 3,269
R> Columns: 2
R> $ ref_date <date> 2010-01-04, 2010-01-05, 2010-01-06, 2~
R> $ price_close <dbl> 1132.99, 1136.52, 1137.14, 1141.69, 11~

Note that the column of dates – ref_date – was imported as a Date vector
and the closing prices – price_close – as numeric (dbl, double accuracy).
This is exactly what we expected. Internally, function readr::read_csv()
identifies columns classes according to their content.

When calling readr::read_csv() without extra arguments, the function
will present in the prompt the classes of each column. Internally, the func-
tion sets the attributes of the columns by reading the first 1000 lines of
the file. Column ref_date was imported with the Date class and column
price_close was imported as double (dbl). We can use this information in
our own code by copying the text and assigning it to a variable. Have a look:
set cols from import message
my_cols <- readr::cols(

ref_date = readr::col_date(),
price_close = readr::col_double()
)

read file with readr::read_csv
my_df_sp500 <- readr::read_csv(my_f, col_types = my_cols)

This time, not message was set to the prompt. As an exercise, Let’s import
the same data, but use a character class for both columns:
set cols from import message
set cols from import message
my_cols <- readr::cols(

ref_date = readr::col_character(),
price_close = readr::col_character()
)

read file with readr::read_csv
my_df_sp500 <- readr::read_csv(my_f, col_types = my_cols)

glimpse the dataframe
dplyr::glimpse(my_df_sp500)

R> Rows: 3,269
R> Columns: 2
R> $ ref_date <chr> "2010-01-04", "2010-01-05", "2010-01-0~

4.2. CSV FILES 91

R> $ price_close <chr> "1132.98999", "1136.52002", "1137.1400~

As expected, both columns are now of class character.

Going further, readr::read_csv() has several other input options such as:

• change the format of the import data, including symbols for decimal
places and encoding (locale option);

• change column names (argument col_names);
• skip n lines before importation (skip option);
• custom definition for NA values (na option)

As an example, let’s study the case of a messy .csv file. In the book package
we have a file called funky_csv_file.csv where:

• the header has textual information;
• the file will use the comma as a decimal;
• the file text will contain Latin characters.

The first 10 lines of the files contain the following content:

R> Example of funky file:
R> - columns separated by ";"
R> - decimal points as ","
R>
R> Data build in 2022-12-28
R> Origin: www.funkysite.com.br
R>
R> ID;Race;Age;Sex;Hour;IQ;Height;Died
R> 001;White;80;Male;00:00:00;92;68;FALSE
R> 002;Hispanic;25;Female;00:00:00;99;68;TRUE

We have a header text up to line number 7 and the columns being separated
by a semicolon (“;”). When importing the data with standard (and wrong)
options, we will have the following output:
my_f <- afedR3::data_path('CH04_funky-csv-file.csv')

df_funky <- readr::read_csv(my_f)

The output shows that only one column of class character was read from
the file. This happens because function readr::read_csv() expects actual
data (and not text) in the first line of the file. To solve it, we need to use
several input arguments to handle the particularities of the file:

92 CHAPTER 4. IMPORTING DATA FROM LOCAL FILES

df_not_funky <- readr::read_delim(
file = my_f, # path of file
skip = 7, # how many lines do skip
delim = ';', # symbol for column separator
col_types = readr::cols(), # column types
locale = readr::locale(decimal_mark = ',') # locale

)

dplyr::glimpse(df_not_funky)

R> Rows: 100
R> Columns: 8
R> $ ID <chr> "001", "002", "003", "004", "005", "006", "~
R> $ Race <chr> "White", "Hispanic", "Asian", "White", "Whi~
R> $ Age <dbl> 80, 25, 25, 64, 76, 89, 33, 61, 23, 59, 80,~
R> $ Sex <chr> "Male", "Female", "Male", "Male", "Female",~
R> $ Hour <time> 00:00:00, 00:00:00, 00:00:00, 00:00:00, 00~
R> $ IQ <dbl> 92, 99, 98, 105, 109, 84, 109, 109, 99, 126~
R> $ Height <dbl> 68, 68, 69, 69, 67, 73, 65, 72, 70, 66, 63,~
R> $ Died <lgl> FALSE, TRUE, TRUE, TRUE, FALSE, TRUE, FALSE~

Note that the data has now been correctly imported, with the correct column
classes. For that, we use the alternative function readr::read_delim()
with custom inputs. Package {readr} (Wickham et al., 2023c) also provides
several other functions for specific import situations.

4.2.2 Exporting Data
To write a .csv file, use the readr::write_csv() function. First, we create
a new dataframe with some random data:
set the number of rows
N <- 100

set dataframe
my_df <- data.frame(y = runif(N),

z = rep('a', N))

print it
print(head(my_df))

R> y z
R> 1 0.3699533 a

4.3. EXCEL FILES (XLSX) 93

R> 2 0.9320087 a
R> 3 0.7509318 a
R> 4 0.5766172 a
R> 5 0.6606423 a
R> 6 0.4357343 a

And now we use readr::write_csv() to save it in a new (and temporary)
.csv file:
set file out
f_out <- fs::file_temp(ext = 'csv')

write to files
readr::write_csv(x = my_df,

file = f_out)

In the previous example, we save the object my_df into a temporary file with
path file4f561324f31e.csv. We can read it back and check its contents using
readr::read_csv() once again:
read it
my_df_imported <- readr::read_csv(f_out)

print first five rows
print(head(my_df_imported))

R> # A tibble: 6 x 2
R> y z
R> <dbl> <chr>
R> 1 0.370 a
R> 2 0.932 a
R> 3 0.751 a
R> 4 0.577 a
R> 5 0.661 a
R> 6 0.436 a

As we can see, the data imported from the file is identical to the one created
in the other code chunk.

4.3 Excel Files (xlsx)
Although it is not an efficient or portable data storage format, Microsoft
Excel is a popular software in Finance and Economics due to its spreadsheet-
like capacities. It is not uncommon for data to be stored and distributed in

94 CHAPTER 4. IMPORTING DATA FROM LOCAL FILES

this format.

The downside of using Excel files for storing data is its low portability and
the longer reading and writing times. This may not be a problem for small
tables, but when handling a large volume of data, using Excel files can be
very frustrating. If you can, my advice is to avoid the use of Excel files in
your work cycle.

4.3.1 Importing Data
R does not have a native function for importing Excel files. Therefore, we
must install and use packages to perform this operation. There are sev-
eral good options including {XLConnect} (Mirai Solutions GmbH, 2023),
{xlsx} (Dragulescu and Arendt, 2020), {readxl} (Wickham and Bryan,
2023) and {tidyxl} (Garmonsway, 2023).

Despite their similar goals, each package has its peculiarities. If reading
Excel files is important to your work, I strongly advise the study of each
package. For example, package {tidyxl} (Garmonsway, 2023) was specially
designed to read unstructured Excel files, where the desired information is
not contained in a tabular format. Alternatively, package {XLConnect}
(Mirai Solutions GmbH, 2023) allows the user to open a live connection and,
from R, control an Excel file, making it possible to export and send data,
format cells, and so on.

In this section, we will give priority to package {readxl} (Wickham and
Bryan, 2023), one of the most straightforward packages to interact with
Excel files. Conveniently, it does not require the installation of external
software.

Let’s start with an example. Consider a file called CH04_SP500-Excel.xlsx
that contains the same SP500 data from previous section. We can import
the information from the file using function readxl::read_excel() :
set excel file
my_f <- afedR3::data_path('CH04_SP500-Excel.xlsx')

read excel file
my_df <- readxl::read_excel(my_f, sheet = 'Sheet1')

print with head (first five rows)
dplyr::glimpse(my_df)

R> Rows: 3,269
R> Columns: 2

4.4. RDATA AND RDS FILES 95

R> $ ref_date <dttm> 2010-01-04, 2010-01-05, 2010-01-06, 2~
R> $ price_close <dbl> 1132.99, 1136.52, 1137.14, 1141.69, 11~

One of the benefits of using Excel files is that the column’s classes are directly
inherited from the file. If the column classes are correct in the Excel file, then
they will automatically be correct in R. In our case, the date column of file
CH04_SP500-Excel.xlsx was correctly set as a dttm object, a special type
of DateTime class. Likewise, even if the Excel file used commas for decimals,
the import process would still succeed as the conversion is handled internally.

4.3.2 Exporting Data
Exporting a dataframe to an Excel file is also easy. Again, no native function
in R performs this procedure. We can, however, use package {writexl}
(Ooms, 2023):
set number of rows
N <- 25

create random dfs
my_df_A <- data.frame(y = seq(1, N),

z = rep('a', N))

writexl::write_xlsx(
x = my_df_A,
path = f_out
)

4.4 RData and rds Files
R offers two native formats to write objects to a local file, RData, and rds.
The benefit of using both is that the saved file is compact and its access is
very fast. The downside is the low portability, i.e., it’s difficult to use the
files in other software.

The difference between RData and rds is that the first can save many R
objects in a single file, while the latter only one. This, however, is not a
hard restriction for the rds format as we can incorporate several objects into
a single one using lists. In practice, a rds file can store as many objects as
needed. We will learn more about lists in chapter 6.

96 CHAPTER 4. IMPORTING DATA FROM LOCAL FILES

4.4.1 Importing Data
To create a new .RData file, use the save() function. See the following
example, where we create a .RData file with some content, clear R’s memory,
and then load the previously created file:
set a object
my_x <- 1:100

set name of RData file
my_file_rdata <- fs::file_temp(ext = 'RData')
my_file_rds <- fs::file_temp(ext = 'rds')

save it in RData
save(list = c('my_x'), file = my_file)

save it in rds
readr::write_rds(my_x, my_file_rds)

We can verify the existence of the file with the fs::file_exists() function:
check if file exists
fs::file_exists(my_file_rdata)

R> /tmp/RtmpCpmYn0/file4f569d1f12.RData
R> FALSE

As expected, file price-data.csv is available.

Now, to import data from .rds files, we use function readr::read_rds() :
load content into workspace
my_x_2 <- readr::read_rds(file = my_file_rds)

Comparing the code between using .RData and .rds files, note that the
.rds format allows the explicit definition of the output object. The con-
tents of my_file_rds is saved in my_x_2. When we use the load() function
for RData files, we cannot name the output directly. This is particularly
inconvenient when you need to modify the name of the imported object.

As a suggestion, use the .rds format to write and read R data.
Its use is more practical, resulting in cleaner code. The differ-
ence in speed between one and the other is minimal. The benefit
of importing multiple objects into the same RData file becomes
irrelevant when using list objects, which can incorporate other
objects into its content.

4.4. RDATA AND RDS FILES 97

4.4.2 Exporting Data
We can create a new RData file with command save() :
set vars
my_x <- 1:100
my_y <- 1:100

write to RData
my_file <- fs::file_temp(ext = 'RData')
save(list = c('my_x', 'my_y'),

file = my_file)

We can again check if the file exists:
fs::file_exists(my_file)

R> /tmp/RtmpCpmYn0/file4f567c72cdfd.RData
R> TRUE

The result is TRUE as expected.

As for .rds files, we save it with function readr::write_rds() :
set data and file
my_x <- 1:100
my_file <- fs::file_temp(ext = 'rds')

save as .rds
readr::write_rds(x = my_x,

file = my_file)

read it
my_x2 <- readr::read_rds(file = my_file)

test equality
print(identical(my_x, my_x2))

R> [1] TRUE

Command identical() tests if both objects are equal. Again, as expected,
we find the result to be TRUE.

98 CHAPTER 4. IMPORTING DATA FROM LOCAL FILES

4.5 fst files
The fst format3, R package {fst} (Klik, 2022), is specially designed to en-
able quick writing and reading time from tabular data, with minimal disk
space. Using this format is particularly beneficial when working with large
databases in powerful computers. The trick here is the use of all computer
cores to import and export data, while all other formats only use one. If
you have a computer with several cores, the gain in speed is impressive, as
we will soon learn.

4.5.1 Importing Data
Using fst file format is similar to the previous cases. We use function
fst::read_fst() to read files:
set file location
my_file <- afedR3::data_path('CH04_example-fst.fst')

read fst file
my_df <- fst::read_fst(my_file)

check contents
dplyr::glimpse(my_df)

R> Rows: 100
R> Columns: 8
R> $ ID <chr> "001", "002", "003", "004", "005", "006", "~
R> $ Race <fct> Black, White, Hispanic, Black, White, White~
R> $ Age <int> 33, 35, 23, 87, 65, 51, 58, 67, 22, 52, 52,~
R> $ Sex <fct> Male, Female, Male, Female, Male, Male, Fem~
R> $ Hour <dbl> 0.00000000, 0.00000000, 0.00000000, 0.00000~
R> $ IQ <dbl> 108, 108, 85, 106, 92, 92, 88, 100, 86, 80,~
R> $ Height <dbl> 72, 63, 77, 72, 71, 74, 64, 69, 63, 72, 70,~
R> $ Died <lgl> FALSE, TRUE, TRUE, FALSE, FALSE, TRUE, TRUE~

As with the other cases, the data from file CH04_example-fst.fst is available
in the workspace.

4.5.2 Exporting Data
We use function fst::write_fst() to save dataframes in the fst format:

3http://www.fstpackage.org/

http://www.fstpackage.org/
http://www.fstpackage.org/

4.5. FST FILES 99

create dataframe
N <- 1000
my_file <- fs::file_temp(ext = 'fst')
my_df <- data.frame(x = runif(N))

write to fst
fst::write_fst(x = my_df, path = my_file)

4.5.3 Timing the fst format
As a test of the potential of the fst format, we will now time the read and
write time between fst and rds for a large table: 5.000.000 rows and 2
columns. We will also report the size of the resulting file.
set number of rows
N <- 5000000

create random dfs
my_df <- data.frame(y = seq(1,N),

z = rep('a',N))

set files
my_file_1 <- fs::file_temp(ext = 'rds')
my_file_2 <- fs::file_temp(ext = 'fst')

test write
time_write_rds <- system.time(readr::write_rds(my_df, my_file_1))
time_write_fst <- system.time(fst::write_fst(my_df, my_file_2))

test read
time_read_rds <- system.time(readr::read_rds(my_file_1))
time_read_fst <- system.time(fst::read_fst(my_file_2))

test file size (MB)
file_size_rds <- file.size(my_file_1)/1000000
file_size_fst <- file.size(my_file_2)/1000000

And now we check the results:
results
my_formats <- c('.rds', '.fst')
results_read <- c(time_read_rds[3], time_read_fst[3])
results_write<- c(time_write_rds[3], time_write_fst[3])

100 CHAPTER 4. IMPORTING DATA FROM LOCAL FILES

results_file_size <- c(file_size_rds , file_size_fst)

print text
my_text <- paste0('\nTime to WRITE dataframe with ',

my_formats, ': ',
results_write, ' seconds', collapse = '')

message(my_text)

R>
R> Time to WRITE dataframe with .rds: 0.545999999999992 seconds
R> Time to WRITE dataframe with .fst: 0.089999999999975 seconds
my_text <- paste0('\nTime to READ dataframe with ',

my_formats, ': ',
results_read, ' seconds', collapse = '')

message(my_text)

R>
R> Time to READ dataframe with .rds: 0.617000000000019 seconds
R> Time to READ dataframe with .fst: 0.099000000000018 seconds
my_text <- paste0('\nResulting FILE SIZE for ',

my_formats, ': ',
results_file_size, ' MBs', collapse = '')

message(my_text)

R>
R> Resulting FILE SIZE for .rds: 65.000177 MBs
R> Resulting FILE SIZE for .fst: 14.791938 MBs

The difference in performance is impressive! The fst not only reads and
writes faster but also results in smaller file sizes. Be aware, however, this
result is found in a sixteen core computer in which the book was compiled.
You may not be able to replicate the same result in a more modest machine.

Due to the use of all the computer’s cores, the fst format is highly
recommended when working with large data on a powerful com-
puter. Not only will the resulting files be smaller, but the writing
and reading process will be considerably faster.

4.6. SQLITE FILES 101

4.6 SQLite Files
The use of .csv or .rds files for storing objects has its limits as the volume
of data increases. If you are waiting a long time to read a dataframe from
a file or if you are only interested in a small portion of a large table, you
should look for alternatives. Likewise, if you have access to the computer
network in your institution, including databases, it is important to learn how
to directly import the corporate data into your R session.

This brings us to the topic of database software. These specific programs
usually work with a query language, called SQL (Structured Query Lan-
guage). It allows the user to read portions of the data and even manipulate
it efficiently. Many options of database software integrate nicely with R.
The list includes MySQL, SQLite and MariaDB. Here, we will provide a
quick tutorial on this topic using SQLite, which is the easiest one to work
with. Unlike other database software, SQLite stores data and configurations
from a single local file, without the need of a formal server.

4.6.1 Importing Data
Before moving to the examples, we need to understand how to use database
software. First, R will connect to the database and return a connection
object. Based on this connection, we will send queries for manipulating
data using the SQL language. The main advantage is we can have a large
database of, let’s say, 10 GB and only load a small portion of it in R. This
operation is also very quick, allowing efficient access to the available tables.

Assuming the existence of an SQLite file in the computer, we can import its
tables with package {RSQLite} (Müller et al., 2023) :
set name of SQLITE file
f_sqlite <- afedR3::data_path('CH04_example-sqlite.SQLite')

open connection
my_con <- RSQLite::dbConnect(

drv = RSQLite::SQLite(),
f_sqlite)

read table
my_df <- RSQLite::dbReadTable(conn = my_con,

name = 'MyTable1') # name of table in sqlite

print with str
dplyr::glimpse(my_df)

102 CHAPTER 4. IMPORTING DATA FROM LOCAL FILES

R> Rows: 1,000
R> Columns: 2
R> $ x <dbl> 0.24645265, 0.47972926, 0.36782192, 0.09451063, ~
R> $ G <chr> "B", "B", "A", "A", "A", "A", "A", "B", "B", "A"~

It worked. The dataframe from table MyTable1 is exactly as expected.

Another example of using SQLite is with the actual SQL statements. Notice,
in the previous code, we used function RSQLite::dbReadTable() to get
the contents of all rows in table MyTable1. Now, let’s use an SQL command
to get from MyTable2 only the rows where the G column is equal to A.
set sql statement
my_SQL_statement <- "select * from myTable2 where G='A'"

get query
my_df_A <- RSQLite::dbGetQuery(conn = my_con,

statement = my_SQL_statement)

disconnect from db
RSQLite::dbDisconnect(my_con)

print with glimpse
dplyr::glimpse(my_df_A)

R> Rows: 522
R> Columns: 2
R> $ x <dbl> 0.9263521, 0.1304614, 0.1758632, 0.2323157, 0.84~
R> $ G <chr> "A", "A", "A", "A", "A", "A", "A", "A", "A", "A"~

It also worked, as expected.

In this simple example, we can see how easy it is to create a connection to
a database, retrieve tables, and disconnect. If you have to work with large
tables, which, in my opinion, is any database that occupies more than 4 GB
of your computer memory, it is worth moving it to proper database software.
You’ll be able to retrieve data faster, without the need of loading the whole
database in the computer’s memory. If you have a server available in your
workplace, I strongly advise learning how to connect to it and use the SQL
language to your advantage.

4.6.2 Exporting Data
As an example of exporting data to an SQLite file, let’s first create an SQLite
database. For that, we will set two large dataframes with random data and

4.7. UNSTRUCTURED DATA AND OTHER FORMATS 103

save both in an SQLite file.
set number of rows in df
N = 10^6

create simulated dataframe
my_large_df_1 <- data.frame(x=runif(N),

G= sample(c('A','B'),
size = N,
replace = TRUE))

my_large_df_2 <- data.frame(x=runif(N),
G = sample(c('A','B'),

size = N,
replace = TRUE))

set path of SQLITE file
f_sqlite <- fs::file_temp(ext = 'SQLITE')

open connection
my_con <- RSQLite::dbConnect(drv = RSQLite::SQLite(), f_sqlite)

write df to sqlite
RSQLite::dbWriteTable(conn = my_con, name = 'MyTable1',

value = my_large_df_1)

RSQLite::dbWriteTable(conn = my_con, name = 'MyTable2',
value = my_large_df_2)

disconnect
RSQLite::dbDisconnect(my_con)

The TRUE output of RSQLite::dbWriteTable() indicates everything went
well. A connection was opened using function RSQLite::dbConnect()
, and both dataframes were written to an SQLite file, called
file4f56c75fe63.SQLITE.

4.7 Unstructured Data and Other For-
mats

Another example of data importation is the case of reading and processing
unstructured text files. If none of the previous packages can read the data,

104 CHAPTER 4. IMPORTING DATA FROM LOCAL FILES

then it must be parsed line by line. Let’s explore this problem.

4.7.1 Importing Data
You can read the contents of a text file with function readr::read_lines()
:
set file to read
my_f <- afedR3::data_path('CH04_price-and-prejudice.txt')

read file line by line
my_txt <- readr::read_lines(my_f)

print 50 characters of first fifteen lines
print(stringr::str_sub(string = my_txt[1:15],

start = 1,
end = 50))

R> [1] " [Illustration:"
R> [2] ""
R> [3] " GEORGE ALLEN"
R> [4] " PUBLISHER"
R> [5] ""
R> [6] " 156 CHARING CROSS ROAD"
R> [7] " LONDON"
R> [8] ""
R> [9] " RUSKIN HOUSE"
R> [10] "]"
R> [11] ""
R> [12] " [Illustration:"
R> [13] ""
R> [14] " _Reading Jane’s Letters._ _Cha"
R> [15] "]"

In this example, file CH04_price-and-prejudice.txt contains the whole con-
tent of the book Pride and Prejudice by Jane Austen, freely available in the
Gutenberg4 project, and downloaded with package {gutenbergr} (John-
ston and Robinson, 2023). We imported the entire content of the file as a
character vector named my_txt. Each element of my_txt is a line from the
raw text file. Based on it, we can check the number of lines in the book, and
also the number of times that the name 'Bennet', one of the protagonists,
appears in the text:

4http://www.gutenberg.org/

http://www.gutenberg.org/
http://www.gutenberg.org/

4.7. UNSTRUCTURED DATA AND OTHER FORMATS 105

count number of lines
n_lines <- length(my_txt)

set target text
name_to_search <- 'Bennet'

set function for counting words
fct_count_bennet <- function(str_in, target_text) {

n_words <- length(
stringr::str_locate_all(string = str_in,

pattern = target_text)[[1]])

return(n_words)
}

use fct for all lines of Pride and Prejudice
n_times <- sum(sapply(X = my_txt,

FUN = fct_count_bennet,
target_text = name_to_search))

print results
my_msg <- paste0('The number of lines found in the file is ',

n_lines, '.\n',
'The word "', name_to_search, '" appears ',
n_times, ' in the book.')

message(my_msg)

R> The number of lines found in the file is 14529.
R> The word "Bennet" appears 696 in the book.

In the example, we used function sapply() . In this case, it allowed us to
use a function for each element of my_txt. We searched and counted the
number of times the word “Bennet” was found.

4.7.2 Exporting Data
A typical case of exporting unstructured text is saving the log record of a
procedure. This is quite simple. Using function readr::write_lines() , use
the input file to set the name of the local file and x for the actual textual
content.

106 CHAPTER 4. IMPORTING DATA FROM LOCAL FILES

set file
my_f <- 'data/temp.txt'

set some string
my_text <- paste0('Today is ', Sys.Date(), '\n',

'Tomorrow is ', Sys.Date()+1)

save string to file
readr::write_lines(x = my_text, file = my_f, append = FALSE)

In the previous example, we created a simple text object and saved it in
data/temp.txt. We can check the result with the readr::read_lines() func-
tion:
print(readr::read_lines(my_f))

R> [1] "Today is 2023-12-13" "Tomorrow is 2023-12-14"

As we can see, it worked as expected.

4.8 How to Select a Data File Format
The choice of file format is an important topic and might actually be a time-
saver at your work. In that decision, my first and most important suggestion
is to avoid the Excel format at all costs. As for alternatives, we must
consider three points in the decision:

• speed of reading and writing operations;
• size of the resulting file;
• compatibility with other software and operating systems.

Usually, the use of csv files easily satisfies these requirements. A csv file
is nothing more than a text file that can be opened, viewed, and imported
into any other statistical software. This makes it easy to share it with other
people. Also, the size of csv files is usually not restrictive and, if needed, the
file can be compressed using the zip() function. For these reasons, the use of
csv files for importing and exporting data is preferable in the vast majority
of situations.

However, there are cases where the speed of import and export operations
matter. If you don’t mind giving up portability, the rds format is a great
choice for most projects. If you have good hardware and execution speed

4.9. EXERCISES 107

with rds is still not great, then the best alternative is the fst format, which
uses all cores to import and export data.

4.9 Exercises

01 - Create a dataframe with the following code:

library(dplyr)

my_N <- 10000
my_df <- tibble(x = 1:my_N,

y = runif(my_N))

Export the resulting dataframe to each of the five formats: csv, rds, xlsx,
fst. Which of the formats took up the most space in the computer’s memory?
Tip: file.size calculates the size of files within R.

02 - Improve the previous code by measuring the execution time for saving
the data in different formats. Which file format resulted in the fastest exe-
cution for exporting data? Tip: use the system.time function or thetictoc
package to calculate the execution times.

03 - For the previous code, reset the value of my_N to 1000000. Does it
change the answers to the last two questions?

04 - Use afedR3::data_path function to access the CH04_SP500.csv file
in the book’s data repository. Import the contents of the file into R with
the function readr::read_csv. How many lines are there in the resulting
dataframe?

05 - At link https://eeecon.uibk.ac.at/~zeileis/grunfeld/Grunfeld.csv/ you’ll
find a .csv file for the Grunfeld data. This is a particularly famous table due
to its use as reference data in econometric models. Using readr::read_csv
function, read this file using the direct link as input read_csv. How many
columns do you find in the resulting dataframe?

https://eeecon.uibk.ac.at/~zeileis/grunfeld/Grunfeld.csv

108 CHAPTER 4. IMPORTING DATA FROM LOCAL FILES

06 - Use function afedR3::data_path function to access the CH04_example-
tsv.tsv file in the book’s data repository. Note that the columns of the data
are separated by the tab symbol ('\t'), and not the usual comma. After
reading the readr::read_delim manual, import the information from this
file to your R session. How many rows does the resulting dataframe contain?

07 - In the book package you’ll find data file called CH04_another-funky-
csv-file.csv, with a particularly bizarre format. Open it in a text editor and
try to understand how the columns are separated and what is symbol for
decimals. After that, study the inputs of function utils::read.table and
import the table into your R session. If we add the number of rows to the
number of columns in the imported table, what is the result?

Chapter 5
Importing Data from the Internet

One of the great advantages of using R in Finance and Economics is the
large amount of data that can be imported using the internet, substituting
the tedious, unreliable and soul-crushing work of manual data collection.
It also becomes easier to share reproducible code, as anyone can feasibly
download the same tables with a single line of code.

In this chapter, we will study the most important and reliable packages for
data importation in the fields of Finance and Economics. It is a small, but
comprehensive list of packages that cover a large range of research topics.
The list includes:

{GetQuandlData} (Perlin, 2023c) Imports economical and financial
data from the Quandl platform.

{yfR} (Perlin, 2023a) Imports adjusted and unadjusted stock price data
from Yahoo Finance.

{simfinapi} (Gomolka, 2023) Imports financial statements and ad-
justed stock prices from the SimFin project1.

{tidyquant} (Dancho and Vaughan, 2023) Imports several financial
information about stock prices and fundamental data.

5.1 Package {GetQuandlData}
Quandl is an established and comprehensive platform that provides access to
a series of free and paid data. Several central banks and research institutions

1https://simfin.com/

109

https://simfin.com/
https://simfin.com/

110 CHAPTER 5. IMPORTING DATA FROM THE INTERNET

provide free economic and financial information on this platform. I strongly
recommend browsing the available tables from the Quandl website2. It is
likely that you’ll find datasets that you’re familiar with.

In R, package {Quandl} (Raymond McTaggart et al., 2021) is the official
extension offered by the company and available in CRAN. However, the
package has some issues (see blog post here3), which are fixed with the
alternative package {GetQuandlData} (Perlin, 2023c).

The first and mandatory step in using {GetQuandlData} (Perlin,
2023c) is to register a user at the Quandl website4. Soon after, go to
account settings and click API KEY. This page should show a code, such as
Asv8Ac7zuZzJSCGxynfG. Copy it to the clipboard (control + c) and, in R,
define a character object containing the copied content as follows:
set FAKE api key to quandl
my_api_key <- 'Asv8Ac7zuZzJSCGxynfG'

The API key is unique to each user, and the one presented here will not work
on your computer. You’ll need to get your own API key to run the examples
of the book. After finding and setting your key, go to Quandl’s website and
use the search box to look for the symbol of the time series of interest. As
an example, we will use data for gold prices in the London Market, with a
Quandl code equivalent to 'LBMA/GOLD'. Do notice that the structure of a
Quandl code is always the same, with the name of the main database at first,
and the name of table second, separated by a forward slash (/).

Now, with the API key and the Quandl symbol, we use function GetQuan-
dlData::get_Quandl_series() to download the data from 1980-01-01 to
2023-01-01:
set symbol and dates
my_symbol <- c('GOLD' = 'LBMA/GOLD')
first_date <- '1980-01-01'
last_date <- '2023-01-01'

get data!
df_quandl <- GetQuandlData::get_Quandl_series(

id_in = my_symbol,
api_key = my_api_key,
first_date = first_date,

2https://data.nasdaq.com/
3https://www.msperlin.com/post/2019-10-01-new-package-getquandldata/
4https://data.nasdaq.com/

https://data.nasdaq.com/
https://www.msperlin.com/post/2019-10-01-new-package-getquandldata/
https://data.nasdaq.com/
https://data.nasdaq.com/
https://data.nasdaq.com/
https://www.msperlin.com/post/2019-10-01-new-package-getquandldata/
https://data.nasdaq.com/

5.2. PACKAGE {YFR} 111

last_date = last_date,
do_cache = FALSE)

check it
dplyr::glimpse(df_quandl)

R> Rows: 10,866
R> Columns: 9
R> $ `USD (AM)` <chr> "559", "632", "596", "634", "615.75", ~
R> $ `USD (PM)` <chr> "559.5", "634", "588", "633.5", "610",~
R> $ `GBP (AM)` <chr> "251.123", "281.577", "266.285", "281.~
R> $ `GBP (PM)` <chr> "250.841", "282.468", "262.77", "280.0~
R> $ `EURO (AM)` <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA~
R> $ `EURO (PM)` <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA~
R> $ series_name <chr> "GOLD", "GOLD", "GOLD", "GOLD", "GOLD"~
R> $ ref_date <date> 1980-01-02, 1980-01-03, 1980-01-04, 1~
R> $ id_quandl <chr> "LBMA/GOLD", "LBMA/GOLD", "LBMA/GOLD",~

Notice how we set the name of the time series in line id_in = c('GOLD'
= 'LBMA/GOLD'). The name of the element becomes the value of column
series_name in df_quandl. If we had more time series, they would be
stacked in the same table, but with different series_name value.

There are other Quandl API options available with inputs order, collapse
and transform. If using Quandl is important to your work, I strongly
recommend reading the available parameters for querying data5. Several
choices for data transformations can be passed to function GetQuandl-
Data::get_Quandl_series() .

As an inspection check, let’s plot the prices of Gold in USD over time.

Overall, gold prices were fairly stable between 1980 and 2000, reaching a
spike after 2010. One possible explanation is the higher demand for safer
assets, such as gold, after the 2009 financial crisis.

5.2 Package {yfR}
Package {yfR} (Perlin, 2023a) is all about downloading stock price data
from Yahoo Finance. Unlike other packages, {yfR} (Perlin, 2023a) focuses
on large batch downloads of structured and clean/tidy data. Its main fea-
tures are:

5https://docs.data.nasdaq.com/docs/parameters-2

https://docs.data.nasdaq.com/docs/parameters-2
https://docs.data.nasdaq.com/docs/parameters-2

112 CHAPTER 5. IMPORTING DATA FROM THE INTERNET

• Fetches daily/weekly/monthly/annual stock prices/returns from
yahoo finance and outputs a dataframe (tibble) in the long format
(stacked data);

• A feature called collections facilitates download of multiple tick-
ers from a particular market/index. You can, for example, down-
load data for all stocks in the SP500 index with a simple call to
yf_collection_get("SP500");

• A session-persistent smart cache system is available by default. This
means that the data is saved locally and only missing portions are
downloaded, if needed.

• All dates are compared to a benchmark ticker such as SP500 and,
whenever an individual asset does not have a sufficient number of
dates, the software drops it from the output. This means you can
choose to ignore tickers with a high proportion of missing dates.

• A customized function called yfR::yf_convert_to_wide() can
transform a long dataframe into a wide format (tickers as columns),
much used in portfolio optimization. The output is a list where each
element is a different target variable (prices, returns, volumes).

• Parallel computing with package furrr is available, speeding up the
data importation process.

As an example of usage, let’s download the prices of four stocks in the pre-
vious five years using function yfR::yf_get() . We choose these companies:
Microsoft (MSFT), Google (GOOGL), JP Morgan (JPM) and General Elec-
tric (GE).

In the call to function yfR::yf_get() , we set arguments thresh_bad_data
= 0.95 and bench_ticker = '^GSPC'. These choices make sure that all
returned data have at least 95% of valid prices when compared to data from
the SP500 index (ticker '^GSPC').
set tickers
tickers <- c('MSFT','GOOGL','JPM','GE')

set dates
first_date <- Sys.Date()-5*365 # past five years
last_date <- Sys.Date() # today
thresh_bad_data <- 0.95 # sets percent threshold for bad data
bench_ticker <- '^GSPC' # set benchmark as SP500

5.2. PACKAGE {YFR} 113

df_yf <- yfR::yf_get(tickers = tickers,
first_date = first_date,
last_date = last_date,
bench_ticker = bench_ticker,
thresh_bad_data = thresh_bad_data)

The output of yfR::yf_get() is an object of type dataframe, a table with
prices and returns:
print df.tickers
dplyr::glimpse(df_yf)

R> Rows: 5,028
R> Columns: 11
R> $ ticker <chr> "GE", "GE", "GE", "GE", "GE~
R> $ ref_date <date> 2018-12-14, 2018-12-17, 20~
R> $ price_open <dbl> 42.51486, 42.57491, 43.1153~
R> $ price_high <dbl> 43.53570, 43.41560, 45.8175~
R> $ price_low <dbl> 42.03447, 42.09452, 42.9952~
R> $ price_close <dbl> 42.63496, 42.93521, 43.7158~
R> $ volume <dbl> 21449181, 21604120, 2444219~
R> $ price_adjusted <dbl> 41.77919, 42.07340, 42.8383~
R> $ ret_adjusted_prices <dbl> NA, 0.007042079, 0.01818195~
R> $ ret_closing_prices <dbl> NA, 0.007042277, 0.01818180~
R> $ cumret_adjusted_prices <dbl> 1.0000000, 1.0070421, 1.025~

As expected, we find information about stock prices, daily returns and traded
volumes. Notice it also includes column ticker, which contains the symbols
of the stocks. In the tidy format, each stock has a chunk of data that is
pilled in top of each other. Later, in chapter 8, we will use this column to
split the data and build summary tables. To inspect the data, create a figure
with the prices:

114 CHAPTER 5. IMPORTING DATA FROM THE INTERNET

JPM MSFT

GE GOOGL

2020 2022 2024 2020 2022 2024

$50

$75

$100

$125

$150

$100

$200

$300

$50

$75

$100

$125

$80

$100

$120

$140

$160

S
to

c
k

A
d
ju

st
e
d
 P

ri
c
e
s

Prices of four stocks

Data from Yahoo Finance

We see that General Eletric (GE) stock was not kind to its investors. Some-
one that bought the stock at its peak in mid-2016 has found its current value
at less than half. Now, when it comes to the GOOGL, JPM and MSFT, we
see an overall upward increase in stock prices, and a recent drop. These are
profitable and competitive companies in their sectors and not surprisingly,
the stock prices surged over the long period of time.

Now, let’s look at an example of a large download of stock price data. Here,
we will download the current composition of the SP500 index using function
yfR::yf_collection_get() .
set dates
first_date <- '2020-01-01'
last_date <- '2023-01-01'

df_dow <- yfR::yf_collection_get(
"DOW",
first_date,
last_date

)

And now we check the resulting data:
dplyr::glimpse(df_dow)

R> Rows: 22,680

5.3. PACKAGE {SIMFINAPI} 115

R> Columns: 11
R> $ ticker <chr> "AAPL", "AAPL", "AAPL", "AA~
R> $ ref_date <date> 2020-01-02, 2020-01-03, 20~
R> $ price_open <dbl> 74.0600, 74.2875, 73.4475, ~
R> $ price_high <dbl> 75.1500, 75.1450, 74.9900, ~
R> $ price_low <dbl> 73.7975, 74.1250, 73.1875, ~
R> $ price_close <dbl> 75.0875, 74.3575, 74.9500, ~
R> $ volume <dbl> 135480400, 146322800, 11838~
R> $ price_adjusted <dbl> 73.15265, 72.44146, 73.0186~
R> $ ret_adjusted_prices <dbl> NA, -0.009721989, 0.0079681~
R> $ ret_closing_prices <dbl> NA, -0.009722036, 0.0079682~
R> $ cumret_adjusted_prices <dbl> 1.0000000, 0.9902780, 0.998~

We get a fairly sized table with 22680 rows and 11 columns in object df_dow.
Notice how easy it was to get that large volume of data from Yahoo Finance
with a simple call to yfR::yf_collection_get() .

Be aware that Yahoo Finance (YF) data for adjusted prices
of single stocks over long periods of time is not trustworthy.
If you compare it to other data vendors, you’ll easily find large
differences. The issue is that Yahoo Finance does not adjust for
dividends, only for stock splits. This means that, when looking at
a price series over a long period of time, there is a downward bias
in overall return. As a rule of thumb, in a formal research, never
use individual stock data from Yahoo Finance, specially if
the stock return is important to the research. The exception is for
financial indexes, such as the SP500, where Yahoo Finance data is
quite reliable since indexes do not undergo the same adjustments
as individual stocks.

5.3 Package {simfinapi}
SimFin6 is a reliable repository of financial data from around the world.
It works by gathering, cleaning and organizing data from different stock
exchanges and financial reports. From its own website7:

Our core goal is to make financial data as freely available as
possible because we believe that having the right tools for in-
vesting/research shouldn’t be the privilege of those that can

6https://simfin.com/
7https://simfin.com/

https://simfin.com/
https://simfin.com/
https://simfin.com/
https://simfin.com/

116 CHAPTER 5. IMPORTING DATA FROM THE INTERNET

afford to spend thousands of dollars per year on data.

As of february 2023, the platform offers a generous free plan, with a daily
limit of 2000 api calls. This is enough calls for most projects. If you need
more calls, the premium version8 is a fraction of what other data vendors
usually request.

Package {simfinapi} (Gomolka, 2023) facilitates importing data from the
SimFin API. First, it makes sure the requested data exists and only then calls
the api. As usual, all api queries are saved locally using package memoise.
This means that the second time you ask for a particular data about a
company/year, the function will load a local copy, and will not call the web
api, helping you stay below the API limits.

5.3.1 Example 01 - Apple Inc Annual Profit
The first step in using simfinR is registering at the SimFin website. Once
done, click on Data Access9. It should now show an API key such as
'rluwSlN304NpyJeBjlxZPspfBBhfJR4o'. Save it in an R object for later
use.
my_api_key <- 'rluwSlN304NpyJeBjlxZPspfBBhfJR4o'

Be aware that the API key in my_api_key is fake and will not work for
you. You need to get your own to execute the examples.

With the API key in hand, the second step is to find the numerical id of the
company of interest. For that, we can find all available companies and their
respective ids and ticker with simfinapi::sfa_get_entities() .
cache_dir <- fs::path_temp("cache-simfin")
fs::dir_create(cache_dir)

simfinapi::sfa_set_api_key(my_api_key)
simfinapi::sfa_set_cache_dir(cache_dir)

get info
df_info_companies <- simfinapi::sfa_get_entities()

check it
glimpse(df_info_companies)

8https://simfin.com/simfin-plus
9https://simfin.com/data/access/api

https://simfin.com/simfin-plus
https://simfin.com/
https://simfin.com/data/access/api
https://simfin.com/simfin-plus
https://simfin.com/data/access/api

5.3. PACKAGE {SIMFINAPI} 117

R> Rows: 5,082
R> Columns: 2
R> $ simfin_id <int> 854465, 45846, 1253413, 1333027, 367153,~
R> $ ticker <chr> "1COV.DE", "A", "A18", "A21", "AA", "AAC~

Now, based on ticker “AAPL”, lets download the download the profit and
loss (PL) statement for Apple INC in 2022:
ticker <- "AAPL" # ticker of APPLE INC
type_statements <- 'pl' # profit/loss statement
period <- 'fy' # final year
fiscal_year <- 2022

PL_aapl <- simfinapi::sfa_get_statement(
ticker = ticker,
statement = type_statements,
period = period,
fyear = fiscal_year)

select columns
PL_aapl <- PL_aapl |>

dplyr::select(ticker, simfin_id, revenue, net_income)

dplyr::glimpse(PL_aapl)

R> Rows: 1
R> Columns: 4
R> $ ticker <chr> "AAPL"
R> $ simfin_id <int> 111052
R> $ revenue <dbl> 3.94328e+11
R> $ net_income <dbl> 9.9803e+10

Not bad! Financially speaking, the year 2022 was very good for Apple.

5.3.2 Example 02 - Annual Net Profit of Many
Companies

Package simfinapi can also fetch information for many companies in a
single call. Let’s run another example by selecting three companies: Apple,
Google and Amazon, and downloading end of year information:
tickers <- c("AAPL", 'GOOG', "AMZN") # ticker of APPLE INC
type_statements <- 'pl' # profit/loss statement
period <- 'fy' # final year

118 CHAPTER 5. IMPORTING DATA FROM THE INTERNET

fiscal_year <- 2022

PL <- simfinapi::sfa_get_statement(
ticker = tickers,
statement = type_statements,
period = period,
fyear = fiscal_year)

select columns
PL <- PL |>

dplyr::select(ticker, simfin_id, revenue, net_income)

dplyr::glimpse(PL)

R> Rows: 3
R> Columns: 4
R> $ ticker <chr> "AAPL", "AMZN", "GOOG"
R> $ simfin_id <int> 111052, 62747, 18
R> $ revenue <dbl> 3.94328e+11, 5.13983e+11, 2.82836e+11
R> $ net_income <dbl> 99803000000, -2722000000, 59972000000

As you can see, it is fairly straightforward to download financial data for
multiple companies using package {simfinapi} (Gomolka, 2023).

5.3.3 Example 03 - Fetching price data
The simfin project also provides prices of stocks, adjusted for dividends,
splits and other corporate events. Have a look at the next example, where
we download adjusted stock prices for the previous three companies:
df_prices <- simfinapi::sfa_get_prices(tickers)

dplyr::glimpse(df_prices)

R> Rows: 14,496
R> Columns: 12
R> $ simfin_id <int> 111052, 111052, 111052, ~
R> $ ticker <chr> "AAPL", "AAPL", "AAPL", ~
R> $ date <date> 2000-01-03, 2000-01-04,~
R> $ currency <chr> "USD", "USD", "USD", "US~
R> $ open <dbl> 0.94, 0.97, 0.93, 0.95, ~
R> $ high <dbl> 1.00, 0.99, 0.99, 0.96, ~
R> $ low <dbl> 0.91, 0.90, 0.92, 0.85, ~

5.4. PACKAGE {TIDYQUANT} 119

R> $ close <dbl> 1.00, 0.92, 0.93, 0.85, ~
R> $ adj_close <dbl> 0.85, 0.78, 0.79, 0.72, ~
R> $ volume <dbl> 535797336, 512378112, 77~
R> $ dividend <dbl> NA, NA, NA, NA, NA, NA, ~
R> $ common_shares_outstanding <dbl> NA, NA, NA, NA, NA, NA, ~

AAPL AMZN GOOG

2000 2010 2020 2000 2010 2020 2000 2010 2020

0

50

100

150

200

A
d
ju

st
e
d
 S

to
c
k

P
ri
c
e
s

Adjusted stock prices for four companies

Price data from simfin

As you can see, the data is comprehensive and should suffice for many dif-
ferent corporate finance research topics.

5.4 Package {tidyquant}
Package {tidyquant} (Dancho and Vaughan, 2023) provides functions re-
lated to financial data acquisition and analysis. It is an ambitious project
that offers many solutions in the field of finance. The package includes func-
tions for obtaining financial data from the web, manipulation of such data,
and the calculation of performance measures of portfolios.

First, we will obtain price data for Apple stocks (AAPL) using function
tidyquant::tq_get() .
set stock and dates
ticker <- 'AAPL'
first_date <- '2020-01-01'

120 CHAPTER 5. IMPORTING DATA FROM THE INTERNET

last_date <- Sys.Date()

get data with tq_get
df_prices <- tidyquant::tq_get(ticker,

get = "stock.prices",
from = first_date,
to = last_date)

dplyr::glimpse(df_prices)

R> Rows: 994
R> Columns: 8
R> $ symbol <chr> "AAPL", "AAPL", "AAPL", "AAPL", "AAPL", "~
R> $ date <date> 2020-01-02, 2020-01-03, 2020-01-06, 2020~
R> $ open <dbl> 74.0600, 74.2875, 73.4475, 74.9600, 74.29~
R> $ high <dbl> 75.1500, 75.1450, 74.9900, 75.2250, 76.11~
R> $ low <dbl> 73.7975, 74.1250, 73.1875, 74.3700, 74.29~
R> $ close <dbl> 75.0875, 74.3575, 74.9500, 74.5975, 75.79~
R> $ volume <dbl> 135480400, 146322800, 118387200, 10887200~
R> $ adjusted <dbl> 73.15265, 72.44147, 73.01868, 72.67528, 7~

As we can see, except for column names, the price data has a similar format
to the one we got with {yfR} (Perlin, 2023a). This is not surprising as both
share the same origin, Yahoo Finance.

We can also get information about components of an index using function
tidyquant::tq_index() . The available market indices are:
print available indices
print(tidyquant::tq_index_options())

R> [1] "DOW" "DOWGLOBAL" "SP400" "SP500"
R> [5] "SP600"

Let’s get information for "DOWGLOBAL".
get components of "DOWJONES"
print(tidyquant::tq_index("DOWGLOBAL"))

R> Getting holdings for DOWGLOBAL

R> # A tibble: 179 x 8
R> symbol company identifier sedol weight sector
R> <chr> <chr> <chr> <chr> <dbl> <chr>
R> 1 QCOM QUALCOMM INC 747525103 2714~ 0.00828 -

5.5. OTHER PACKAGES 121

R> 2 VWS VESTAS WIND SYSTE~ BN4MYF907 BN4M~ 0.00810 -
R> 3 DBK DEUTSCHE BANK AG ~ 575035902 5750~ 0.00801 -
R> 4 NKE NIKE INC CL B 654106103 2640~ 0.00786 -
R> 5 BBVA BANCO BILBAO VIZC~ 550190904 5501~ 0.00783 -
R> 6 UCG UNICREDIT SPA BYMXPS901 BYMX~ 0.00782 -
R> 7 AVGO BROADCOM INC 11135F101 BDZ7~ 0.00780 -
R> 8 BA BOEING CO/THE 097023105 2108~ 0.00763 -
R> 9 SPG SIMON PROPERTY GR~ 828806109 2812~ 0.00754 -
R> 10 SIE SIEMENS AG REG 572797900 5727~ 0.00750 -
R> # i 169 more rows
R> # i 2 more variables: shares_held <dbl>,
R> # local_currency <chr>

We only looked into a few functions from the package. {tidyquant} (Dan-
cho and Vaughan, 2023) also offers solutions for the usual financial manipu-
lations, such as calculating returns and functions for portfolio analytics. You
can find more details about this package in its website10.

5.5 Other Packages
In CRAN, you’ll find many more packages for importing financial datasets
in R. In this section, we focused on packages, which are free and easy to use.
Interface with commercial data sources is also possible. Several companies
provide APIs for serving data to their clients. Packages such as {Rblpapi}
(Armstrong et al., 2022) for Bloomberg, {IBrokers} (?) for Interactive
Brokers can make R communicate with commercial platforms. If the com-
pany you use is not available, check the list of packages in CRAN11. It is
very likely you’ll find what you need.

5.6 Accessing Data from Web Pages (web-
scraping)

Packages from previous section facilitates data importation over the internet.
However, in many cases, the information of interest is not available through
a package, but on a web page. Fortunately, we can use R to read the data
and import the desired information into an R session. The main advantage
is that, every time we execute the code, we get the same content available
in the website.

10https://business-science.github.io/tidyquant/
11https://cran.r-project.org/

https://business-science.github.io/tidyquant/
https://cran.r-project.org/
https://business-science.github.io/tidyquant/
https://cran.r-project.org/

122 CHAPTER 5. IMPORTING DATA FROM THE INTERNET

The process of extracting information from web pages is called webscraping.
Depending on the structure and technology used on the internet page, im-
porting its content can be as trivial as a single line in R or a complex process,
taking hundreds of lines of code.

5.6.1 Scraping the Components of the SP500 In-
dex from Wikipedia

As an example of webscraping, let’s retrieve tabular information about the
SP500 index from Wikipedia. In its website, Wikipedia offers a section12

about the components of the SP500 index. This information is presented in
a tabular format, Figure 5.1.

Figure 5.1: Mirror of Wikipedia page on SP500 components

The information on this web page is constantly updated, and we can use
it to import information about the stocks belonging to the SP500 index.
Before delving into the R code, we need to understand how a webpage works.
Briefly, a webpage is nothing more than a lengthy code interpreted by your
browser. A numerical value or text presented on the website can usually be
found within the code. This code has a particular tree-like structure with
branches and classes. Moreover, every element of a webpage has an address,
called xpath. In chrome and firefox browsers, you can see the actual code of
a webpage by using the mouse to right-click any part of the webpage and
selecting View page source.

The first step in webscraping is finding out the location of the information
you need. In Chrome, you can do that by right-clicking in the specific
location of the number/text on the website and selecting inspect. This will

12https://en.wikipedia.org/wiki/List_of_S%26P_500_companies

https://en.wikipedia.org/wiki/List_of_S%26P_500_companies
https://en.wikipedia.org/wiki/List_of_S%26P_500_companies

5.6. ACCESSING DATA FROM WEB PAGES (WEBSCRAPING)123

open an extra window in the browser. Once you do that, right-click in the
selection and click in copy and copy xpath. In Figure 5.2, we see a mirror of
what you should be seeing in your browser.

Figure 5.2: Finding xpath from website

Here, the copied xpath is:
'//*[@id="mw-content-text"]/table[1]/thead/tr/th[2]'

This is the address of the header of the table. For the whole con-
tent of the table, including header, rows, and columns, we need to
set an upper level of the HTML tree. This is equivalent to address
//*[@id="MW-content-text"]/table[1].

Now that we have the location of what we want, let’s load package
{rvest} (Wickham, 2022) and use functions rvest::read_html() ,
rvest::html_nodes() and rvest::html_table() to import the desired
table into R:
set url and xpath
my_url <- paste0('https://en.wikipedia.org/wiki/',

'List_of_S%26P_500_companies')
my_xpath <- '//*[@id="mw-content-text"]/div/table[1]'

get nodes from html
out_nodes <- rvest::html_nodes(rvest::read_html(my_url),

xpath = my_xpath)

get table from nodes (each element in
list is a table)
df_SP500_comp <- rvest::html_table(out_nodes)

isolate it

124 CHAPTER 5. IMPORTING DATA FROM THE INTERNET

df_SP500_comp <- df_SP500_comp[[1]]

change column names (remove space)
names(df_SP500_comp) <- make.names(names(df_SP500_comp))

print it
dplyr::glimpse(df_SP500_comp)

R> Rows: 503
R> Columns: 8
R> $ Symbol <chr> "MMM", "AOS", "ABT", "ABBV",~
R> $ Security <chr> "3M", "A. O. Smith", "Abbott~
R> $ GICS.Sector <chr> "Industrials", "Industrials"~
R> $ GICS.Sub.Industry <chr> "Industrial Conglomerates", ~
R> $ Headquarters.Location <chr> "Saint Paul, Minnesota", "Mi~
R> $ Date.added <chr> "1957-03-04", "2017-07-26", ~
R> $ CIK <int> 66740, 91142, 1800, 1551152,~
R> $ Founded <chr> "1902", "1916", "1888", "201~

Object df_SP500_comp contains a mirror of the data from the Wikipedia
website. The names of the columns require some work, but the raw data is
intact and could be further used in a script.

Learning webscraping techniques can give you access to an immense amount
of information available on the web. However, each scenario of webscraping
is particular. It is not always the case you can import data directly and
easily as in previous example.

Another problem is that the webscrapping code depends on the structure of
the website. Any simple change in the html structure and your code will
fail. You should be aware that maintaining a webscraping code can demand
significant time and effort from the developer. If possible, you should always
check for alternative sources of the same information.

Readers interested in learning more about this topic should study the func-
tionalities of packages {XML} (Temple Lang, 2023) and {RSelenium}
(Harrison, 2022)

5.7 Exercises

01 - Using the yfR package, download daily data of the Facebook stock
(META) from Yahoo Finance for the period between 2019 and 2023. What

5.7. EXERCISES 125

is the lowest unadjusted closing price (column price.close) in the
analyzed period?

02 - If you have not already done so, create a profile on the Quandl website13

and download the arabica coffee price data in the CEPEA database (Center
for Advanced Studies in Applied Economics)) between 2010-01-01 and 2020-
12-31. What is the value of the most recent price?

03 - Use function simfinapi::sfa_get_entities() to import data about
all available companies in Simfin. How many companies do you find? (see
function dplyr::n_distinct()).

04 - With package simfinapi, download the PL (profit/loss) statement for
FY (final year) data for TESLA (ticker = “TSLA”) for year 2022. What is
the latest Profit/Loss of the company for that particular year?

05 - Using function tidyquant::tq_index, download the current composi-
tion of index DOWGLOBAL. What is the company with the highest per-
centage in the composition of the index?

Be aware that the answer is time-dependent and the reported result might
be different from what you actually got in your R session.

06 - Using again the yfR package, download financial data between 2019-01-
01 and 2020-01-01 for the following tickers:

• AAPL: Apple Inc
• BAC: Bank of America Corporation
• GE: General Electric Company
• TSLA: Tesla, Inc.
• SNAP: Snap Inc.

Using the adjusted closing price column, what company provided higher
return to the stock holder during the analyzed period?

13https://www.quandl.com/

https://www.quandl.com/
https://simfin.com
https://www.quandl.com/

126 CHAPTER 5. IMPORTING DATA FROM THE INTERNET

Tip: this is an advanced exercise that will require some coding. To solve it,
check out function split to split the dataframe of price data and lapply to
map a function to each dataframe.

Chapter 6
Dataframes and Other Objects

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

6.1 Dataframes

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

127

https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/

128 CHAPTER 6. DATAFRAMES AND OTHER OBJECTS

6.1.1 Creating dataframes

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

6.1.2 Inspecting a Dataframe

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

6.1.3 The pipeline Operators (|> and |>)

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/

6.1. DATAFRAMES 129

6.1.4 Accessing Columns

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

6.1.5 Modifying a dataframe

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

6.1.6 Filtering rows of a dataframe

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/

130 CHAPTER 6. DATAFRAMES AND OTHER OBJECTS

6.1.7 Sorting a dataframe

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

6.1.8 Combining and Aggregating dataframes

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

6.1.9 Extensions of the dataframe Class

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/

6.2. LISTS 131

6.1.10 Other Useful Functions for Handling
dataframes

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

6.2 Lists

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

6.2.1 Creating lists

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/

132 CHAPTER 6. DATAFRAMES AND OTHER OBJECTS

6.2.2 Accessing the Elements of a list

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

6.2.3 Adding and Removing Elements from a list

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

6.2.4 Processing the Elements of a list

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/

6.3. MATRICES 133

6.2.5 Other Useful Functions

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

6.3 Matrices

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

6.3.1 Selecting Elements from a matrix

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/

134 CHAPTER 6. DATAFRAMES AND OTHER OBJECTS

6.3.2 Other Useful Functions

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

6.4 Exercises

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/

Chapter 7
Basic Object Classes

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

7.1 Numeric Objects

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

135

https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/

136 CHAPTER 7. BASIC OBJECT CLASSES

7.1.1 Creating and Manipulating numeric Objects

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

7.1.2 Creating a numeric Sequence

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

7.1.3 Creating Vectors with Repeated Elements

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/

7.1. NUMERIC OBJECTS 137

7.1.4 Creating Vectors with Random Numbers

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

7.1.5 Accessing the Elements of a numeric Vector

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

7.1.6 Modifying and Removing Elements of a
numeric Vector

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/

138 CHAPTER 7. BASIC OBJECT CLASSES

7.1.7 Creating Groups

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

7.1.8 Other Useful Functions

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

7.2 Character Objects

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/

7.2. CHARACTER OBJECTS 139

7.2.1 Creating a Simple character Object

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

7.2.2 Creating Structured character Objects

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

7.2.3 character Constants

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/

140 CHAPTER 7. BASIC OBJECT CLASSES

7.2.4 Selecting Pieces of a Text Object

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

7.2.5 Finding and Replacing Characters of a Text

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

7.2.6 Splitting Text

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/

7.2. CHARACTER OBJECTS 141

7.2.7 Finding the Number of Characters in a Text

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

7.2.8 Generating Combinations of Text

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

7.2.9 Encoding of character Objects

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/

142 CHAPTER 7. BASIC OBJECT CLASSES

7.2.10 Other Useful Functions

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

7.3 Factor Objects

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

7.3.1 Creating factors

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/

7.3. FACTOR OBJECTS 143

7.3.2 Modifying factors

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

7.3.3 Converting factors to Other Classes

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

7.3.4 Creating Contingency Tables

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/

144 CHAPTER 7. BASIC OBJECT CLASSES

7.3.5 Other Useful Functions

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

7.4 Logical Objects

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

7.4.1 Creating logical Objects

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/

7.5. DATE AND TIME 145

7.5 Date and Time

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

7.5.1 Creating Simple Dates

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

7.5.2 Creating a Sequence of Dates

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/

146 CHAPTER 7. BASIC OBJECT CLASSES

7.5.3 Operations with Dates

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

7.5.4 Dealing with Time

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

7.5.5 Customizing the Format of Dates and Times

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/

7.5. DATE AND TIME 147

7.5.6 Extracting Elements of a Date

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

7.5.7 Find the Current Date and Time

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

7.5.8 Other Useful Functions

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/

148 CHAPTER 7. BASIC OBJECT CLASSES

7.6 Missing Data - NA (Not available)

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

7.6.1 Defining NA Values

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

7.6.2 Finding and Replacing NA

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/

7.7. EXERCISES 149

7.6.3 Other Useful Functions

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

7.7 Exercises

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/

150 CHAPTER 7. BASIC OBJECT CLASSES

Chapter 8
Programming and Data Analysis

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

8.1 R Functions

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

151

https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/

152 CHAPTER 8. PROGRAMMING AND DATA ANALYSIS

8.2 Using for Loops

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

8.3 Conditional Statements (if, else,
switch)

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

8.4 Functional Programming

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/

8.4. FUNCTIONAL PROGRAMMING 153

8.4.1 Using lapply()

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

8.4.2 Using sapply()

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

8.4.3 Using tapply()

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/

154 CHAPTER 8. PROGRAMMING AND DATA ANALYSIS

8.4.4 Using mapply()

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

8.4.5 Using apply()

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

8.4.6 Using by()

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/

8.5. USING PACKAGE {PURRR} 155

8.5 Using package {purrr}

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

8.5.1 Function map()

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

8.5.2 Function safely()

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/

156 CHAPTER 8. PROGRAMMING AND DATA ANALYSIS

8.5.3 Function pmap()

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

8.6 Data Manipulation with Package
{dplyr}

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

8.6.1 Group Operations

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/

8.7. EXERCISES 157

8.6.2 Complex Group Operations

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

8.7 Exercises

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/

158 CHAPTER 8. PROGRAMMING AND DATA ANALYSIS

Chapter 9
Cleaning and Structuring Data

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

9.1 The Format of a dataframe

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

159

https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/

160 CHAPTER 9. CLEANING AND STRUCTURING DATA

9.1.1 Converting a dataframe Structure (long and
wide)

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

9.2 Converting lists into dataframes

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

9.3 Removing Outliers

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/

9.4. INFLATION AND PRICE DATA 161

9.3.1 Treating Outliers in dataframes

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

9.4 Inflation and Price Data

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

9.5 Modifying Time Frequency and Ag-
gregating Data

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/

162 CHAPTER 9. CLEANING AND STRUCTURING DATA

9.6 Exercises

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/

Chapter 10
Data Visualization with
{ggplot2}

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

10.1 Principles for Data visualization

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

163

https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/

164 CHAPTER 10. DATA VISUALIZATION WITH {GGPLOT2}

10.2 The {ggplot2} Package

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

10.3 Using Graphics Windows

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

10.4 Creating Figures with Function gg-
plot()

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/

10.5. DATA VISUALIZATION FOR GROUPS 165

10.5 Data Visualization for Groups

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

10.5.1 The US Yield Curve

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

10.6 Using Themes

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/

166 CHAPTER 10. DATA VISUALIZATION WITH {GGPLOT2}

10.7 Creating Panels with facet_wrap

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

10.8 Using the Pipeline

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

10.9 Creating Statistical Graphics

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/

10.9. CREATING STATISTICAL GRAPHICS 167

10.9.1 Creating Histograms

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

10.9.2 Creating boxplot Figures

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

10.9.3 Creating QQ Plots

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/

168 CHAPTER 10. DATA VISUALIZATION WITH {GGPLOT2}

10.10 Saving Graphics to a File

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

10.11 Exercises

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/

Chapter 11
Financial Econometrics with R

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

11.1 Linear Models (OLS)

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

169

https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/

170 CHAPTER 11. FINANCIAL ECONOMETRICS WITH R

11.1.1 Simulating a Linear Model

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

11.1.2 Estimating a Linear Model

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

11.1.3 Statistical Inference in Linear Models

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/

11.2. GENERALIZED LINEAR MODELS (GLM) 171

11.2 Generalized Linear Models (GLM)

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

11.2.1 Simulating a GLM Model

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

11.2.2 Estimating a GLM Model

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/

172 CHAPTER 11. FINANCIAL ECONOMETRICS WITH R

11.3 Panel Data Models

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

11.3.1 Simulating Panel Data Models

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

11.3.2 Estimating Panel Data Models

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/

11.4. ARIMA MODELS 173

11.4 Arima Models

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

11.4.1 Simulating Arima Models

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

11.4.2 Estimating Arima Models

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/

174 CHAPTER 11. FINANCIAL ECONOMETRICS WITH R

11.4.3 Forecasting Arima Models

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

11.5 GARCH Models

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

11.5.1 Simulating Garch Models

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/

11.6. DEALING WITH SEVERAL MODELS 175

11.5.2 Estimating Garch Models

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

11.5.3 Forecasting Garch Models

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

11.6 Dealing with Several Models

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/

176 CHAPTER 11. FINANCIAL ECONOMETRICS WITH R

11.6.1 Using tapply() and sapply()

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

11.6.2 Using by()

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

11.6.3 Using dplyr::group_by()

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/

11.7. EXERCISES 177

11.7 Exercises

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/

178 CHAPTER 11. FINANCIAL ECONOMETRICS WITH R

Chapter 12
Reporting Results

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

12.1 Reporting Tables

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

179

https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/

180 CHAPTER 12. REPORTING RESULTS

12.2 Reporting Models

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

12.3 Creating Reports with RMarkdown

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

12.4 Exercises

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/

Chapter 13
Optimizing Code

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

13.1 Optimizing your Programming Time

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

181

https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/

182 CHAPTER 13. OPTIMIZING CODE

13.2 Optimizing Code Speed

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

13.2.1 Profiling Code

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

13.2.2 Simple Strategies to Improve Code Speed

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/

13.2. OPTIMIZING CODE SPEED 183

13.2.2.1 Use Vector Operations

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

13.2.2.2 Repetitive binding of dataframes

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

13.2.3 Using C++ code (package {Rcpp})

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/

184 CHAPTER 13. OPTIMIZING CODE

13.2.4 Using cache (package {memoise})

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

13.2.4.1 Using parallel processing (package {furrr})

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

13.3 Exercises

You reached the end of the online version of Analyzing Financial
and Economic Data with R. The full content of the book can be
acquired at Amazon for less than ten dollars. Purchasing this
book is a great way of supporting this and other projects of the
author. If you are satisfied with the content, please leave your
feedback at Amazon or by email (marceloperlin@gmail.com). The
book is a lifelong project and I’ll keep improving it based on the
received feedback.

https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/
https://www.amazon.com/dp/B084LSNXMN
https://www.msperlin.com/

Bibliography

Armstrong, W., Eddelbuettel, D., and Laing, J. (2022).
Rblpapi: R Interface to Bloomberg. R package version 0.3.14,
https://github.com/Rblp/Rblpapi.

Bache, S. M. and Wickham, H. (2022). magrittr: A Forward-Pipe Operator
for R. R package version 2.0.3, https://github.com/tidyverse/magrittr.

Chang, W., Cheng, J., Allaire, J., Sievert, C., Schloerke, B., Xie, Y., Allen,
J., McPherson, J., Dipert, A., and Borges, B. (2021). shiny: Web Appli-
cation Framework for R. R package version 1.6.0.

Dancho, M. and Vaughan, D. (2023). tidyquant: Tidy Quantitative Financial
Analysis. R package version 1.0.7.

Dragulescu, A. and Arendt, C. (2020). xlsx: Read, Write, Format Excel 2007
and Excel 97/2000/XP/2003 Files. R package version 0.6.5.

Eddelbuettel, D., Francois, R., Allaire, J., Ushey, K., Kou, Q., Rus-
sell, N., Ucar, I., Bates, D., and Chambers, J. (2023). Rcpp:
Seamless R and C++ Integration. R package version 1.0.11,
https://dirk.eddelbuettel.com/code/rcpp.html.

Garmonsway, D. (2023). tidyxl: Read Untidy Excel Files. R package version
1.0.9, https://nacnudus.github.io/tidyxl/.

Gomolka, M. (2023). simfinapi: Accessing SimFin Data. R package version
0.2.4.

Harrison, J. (2022). RSelenium: R Bindings for Selenium WebDriver. R
package version 1.7.9.

Hester, J., Wickham, H., and Csárdi, G. (2023). fs: Cross-Platform File
System Operations Based on libuv. R package version 1.6.3.

185

186 BIBLIOGRAPHY

Johnston, M. and Robinson, D. (2023). gutenbergr: Download and Process
Public Domain Works from Project Gutenberg. R package version 0.2.4,
https://github.com/ropensci/gutenbergr.

Klik, M. (2022). fst: Lightning Fast Serialization of Data Frames. R package
version 0.9.8.

Mirai Solutions GmbH (2023). XLConnect: Excel Connector for R. R
package version 1.0.7.

Müller, K., Wickham, H., James, D. A., and Falcon, S. (2023). RSQLite:
SQLite Interface for R. R package version 2.3.4.

Ooms, J. (2023). writexl: Export Data Frames to Excel xlsx Format. R
package version 1.4.2.

Perlin, M. (2023a). yfR: Downloads and Organizes Financial Data from
Yahoo Finance. R package version 1.1.0.

Perlin, M. S. (2023b). afedR3: Data and Functions for third edition of Book
”Analyzing Financial and Economical Data with R”. R package version
0.1.

Perlin, M. S. (2023c). GetQuandlData: Fast and Cached Import of Data
from Quandl Using the json API. R package version 1.0.0.

R Core Team (2023a). foreign: Read Data Stored by Minitab, S, SAS, SPSS,
Stata, Systat, Weka, dBase, ... R package version 0.8-86.

R Core Team (2023b). R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria.

Raymond McTaggart, Gergely Daroczi, and Clement Leung (2021). Quandl:
API Wrapper for Quandl.com. R package version 2.11.0.

Ryan, J. A. and Ulrich, J. M. (2023). quantmod: Quantitative Financial
Modelling Framework. R package version 0.4.25.

Teetor, P. (2011). R cookbook. ” O’Reilly Media, Inc.”.

Temple Lang, D. (2023). XML: Tools for Parsing and Generating XML
Within R and S-Plus. R package version 3.99-0.16.

Vaughan, D. and Dancho, M. (2022). furrr: Apply Mapping
Functions in Parallel using Futures. R package version 0.3.1,
https://furrr.futureverse.org/.

Venables, W. N., Smith, D. M., Team, R. D. C., et al. (2004). An introduc-
tion to r.

BIBLIOGRAPHY 187

Wickham, H. (2019). Advanced r. CRC press.

Wickham, H. (2022). rvest: Easily Harvest (Scrape) Web Pages. R package
version 1.0.3.

Wickham, H. (2023). tidyverse: Easily Install and Load the Tidyverse. R
package version 2.0.0, https://github.com/tidyverse/tidyverse.

Wickham, H. and Bryan, J. (2023). readxl: Read Excel Files. R package
version 1.4.3.

Wickham, H., Chang, W., Henry, L., Pedersen, T. L., Takahashi, K., Wilke,
C., Woo, K., Yutani, H., and Dunnington, D. (2023a). ggplot2: Create
Elegant Data Visualisations Using the Grammar of Graphics. R package
version 3.4.4, https://github.com/tidyverse/ggplot2.

Wickham, H., François, R., Henry, L., Müller, K., and Vaughan, D. (2023b).
dplyr: A Grammar of Data Manipulation. R package version 1.1.4.

Wickham, H., Hester, J., and Bryan, J. (2023c). readr: Read Rectangular
Text Data. R package version 2.1.4.

Wickham, H., Hester, J., Chang, W., and Bryan, J. (2022). devtools: Tools
to Make Developing R Packages Easier. R package version 2.4.5.

Wickham, H., Hester, J., Chang, W., Müller, K., and Cook, D. (2021).
memoise: Memoisation of Functions. R package version 2.0.1.

188 BIBLIOGRAPHY

Index

afedR3, 11, 15, 16, 27, 87
data_path, 87

base, 33, 88
array, 58
c, 54
class, 55, 56
dim, 57, 58
getwd, 64
identical, 97
length, 57
library, 43, 44
load, 96
ls, 55, 63
ncol, 57
nrow, 57
print, 39, 56
require, 44, 45
rm, 62, 63
sapply, 105
save, 96, 97
setwd, 64, 86
sort, 33, 34
source, 50
Sys.localeconv, 35

devtools, 16, 42
install_github, 43

dplyr, 43

glimpse, 15, 89

foreign, 85
fortunes, 44

fortune, 44
fs, 71

dir_delete, 73
dir_exists, 74
dir_ls, 71
file_delete, 73
file_exists, 96
file_temp, 75, 76
path_temp, 75

fst, 98
read_fst, 98
write_fst, 98

furrr, 14

GetQuandlData, 109, 110
get_Quandl_series, 110, 111

ggplot2, 14
gutenbergr, 104

IBrokers, 121

magrittr, 11
memoise, 14

Quandl, 110
quantmod, 44, 45

189

190 INDEX

Rblpapi, 121
Rcpp, 14, 21
readr, 42, 92

read_csv, 88–91, 93
read_delim, 92
read_lines, 104, 106
read_rds, 96
write_csv, 92, 93
write_lines, 105
write_rds, 97

readxl, 94
read_excel, 94

RSelenium, 124
RSQLite, 101

dbConnect, 103
dbReadTable, 102
dbWriteTable, 103

rvest, 123
html_nodes, 123
html_table, 123
read_html, 123

shiny, 22
simfinapi, 109, 116, 118

sfa_get_entities, 116

tidyquant, 109, 119, 121
tq_get, 119
tq_index, 120

tidyverse, 88, 89
tidyxl, 94

utils
download.file, 74
help, 48
install.packages, 42, 43
installed.packages, 42
read.csv, 88
str, 56
update.packages, 45
zip, 106

writexl, 95

XLConnect, 94
xlsx, 94
XML, 124

yfR, 109, 111, 120
yf_collection_get, 114, 115
yf_convert_to_wide, 112
yf_get, 112, 113

	About New Edition
	Preface
	Conventions
	Supplement Material
	Content for Instructors

	Introduction
	What is R
	Why Choose R
	What Can You Do With R and RStudio?
	Installing R
	Installing RStudio
	Resources in the Web
	Structure and Organization
	Exercises

	Basic Operations in R
	Working With R
	Objects in R
	International and Local Formats
	Types of Files in R
	Explaining the RStudio Screen
	R Packages
	Installing Packages from CRAN
	Installing Packages from Github
	Loading Packages
	Upgrading Packages

	Running Scripts from RStudio
	Using the help files
	RStudio shortcuts

	Testing and Debugging Code
	Creating Simple Objects
	Creating Vectors
	Knowing Your Environment and Objects
	Finding the Size of Objects
	Selecting Elements from an Atomic Vector
	Removing Objects from the Memory
	Displaying and Setting the Working Directory
	Canceling Code Execution
	Code Comments
	Using Code Completion with tab
	Interacting with Files and the Operating System
	Listing Files and Folders
	Deleting Files and Directories
	Downloading Files from the Internet
	Using Temporary Files and Directories

	Exercises

	Writing Research Scripts
	Stages of Research
	Folder Structure
	Important Aspects of a Research Script
	Exercises

	Importing Data from Local Files
	The path of local files
	csv files
	Importing Data
	Exporting Data

	Excel Files (xlsx)
	Importing Data
	Exporting Data

	RData and rds Files
	Importing Data
	Exporting Data

	fst files
	Importing Data
	Exporting Data
	Timing the fst format

	SQLite Files
	Importing Data
	Exporting Data

	Unstructured Data and Other Formats
	Importing Data
	Exporting Data

	How to Select a Data File Format
	Exercises

	Importing Data from the Internet
	Package {GetQuandlData}
	Package {yfR}
	Package {simfinapi}
	Example 01 - Apple Inc Annual Profit
	Example 02 - Annual Net Profit of Many Companies
	Example 03 - Fetching price data

	Package {tidyquant}
	Other Packages
	Accessing Data from Web Pages (webscraping)
	Scraping the Components of the SP500 Index from Wikipedia

	Exercises

	Dataframes and Other Objects
	Dataframes
	Creating dataframes
	Inspecting a Dataframe
	The pipeline Operators (|> and |>)
	Accessing Columns
	Modifying a dataframe
	Filtering rows of a dataframe
	Sorting a dataframe
	Combining and Aggregating dataframes
	Extensions of the dataframe Class
	Other Useful Functions for Handling dataframes

	Lists
	Creating lists
	Accessing the Elements of a list
	Adding and Removing Elements from a list
	Processing the Elements of a list
	Other Useful Functions

	Matrices
	Selecting Elements from a matrix
	Other Useful Functions

	Exercises

	Basic Object Classes
	Numeric Objects
	Creating and Manipulating numeric Objects
	Creating a numeric Sequence
	Creating Vectors with Repeated Elements
	Creating Vectors with Random Numbers
	Accessing the Elements of a numeric Vector
	Modifying and Removing Elements of a numeric Vector
	Creating Groups
	Other Useful Functions

	Character Objects
	Creating a Simple character Object
	Creating Structured character Objects
	character Constants
	Selecting Pieces of a Text Object
	Finding and Replacing Characters of a Text
	Splitting Text
	Finding the Number of Characters in a Text
	Generating Combinations of Text
	Encoding of character Objects
	Other Useful Functions

	Factor Objects
	Creating factors
	Modifying factors
	Converting factors to Other Classes
	Creating Contingency Tables
	Other Useful Functions

	Logical Objects
	Creating logical Objects

	Date and Time
	Creating Simple Dates
	Creating a Sequence of Dates
	Operations with Dates
	Dealing with Time
	Customizing the Format of Dates and Times
	Extracting Elements of a Date
	Find the Current Date and Time
	Other Useful Functions

	Missing Data - NA (Not available)
	Defining NA Values
	Finding and Replacing NA
	Other Useful Functions

	Exercises

	Programming and Data Analysis
	R Functions
	Using for Loops
	Conditional Statements (if, else, switch)
	Functional Programming
	Using lapply()
	Using sapply()
	Using tapply()
	Using mapply()
	Using apply()
	Using by()

	Using package {purrr}
	Function map()
	Function safely()
	Function pmap()

	Data Manipulation with Package {dplyr}
	Group Operations
	Complex Group Operations

	Exercises

	Cleaning and Structuring Data
	The Format of a dataframe
	Converting a dataframe Structure (long and wide)

	Converting lists into dataframes
	Removing Outliers
	Treating Outliers in dataframes

	Inflation and Price Data
	Modifying Time Frequency and Aggregating Data
	Exercises

	Data Visualization with {ggplot2}
	Principles for Data visualization
	The {ggplot2} Package
	Using Graphics Windows
	Creating Figures with Function ggplot()
	Data Visualization for Groups
	The US Yield Curve

	Using Themes
	Creating Panels with facet_wrap
	Using the Pipeline
	Creating Statistical Graphics
	Creating Histograms
	Creating boxplot Figures
	Creating QQ Plots

	Saving Graphics to a File
	Exercises

	Financial Econometrics with R
	Linear Models (OLS)
	Simulating a Linear Model
	Estimating a Linear Model
	Statistical Inference in Linear Models

	Generalized Linear Models (GLM)
	Simulating a GLM Model
	Estimating a GLM Model

	Panel Data Models
	Simulating Panel Data Models
	Estimating Panel Data Models

	Arima Models
	Simulating Arima Models
	Estimating Arima Models
	Forecasting Arima Models

	GARCH Models
	Simulating Garch Models
	Estimating Garch Models
	Forecasting Garch Models

	Dealing with Several Models
	Using tapply() and sapply()
	Using by()
	Using dplyr::group_by()

	Exercises

	Reporting Results
	Reporting Tables
	Reporting Models
	Creating Reports with RMarkdown
	Exercises

	Optimizing Code
	Optimizing your Programming Time
	Optimizing Code Speed
	Profiling Code
	Simple Strategies to Improve Code Speed
	Using C++ code (package {Rcpp})
	Using cache (package {memoise})

	Exercises

